
EXPECTED COVERAGE (EXCOV): A
PROPOSAL TO COMPUTE FUZZ TEST

COVERAGE WITHIN AN INFINITE INPUT
SPACE

THESIS

Evan V. Swihart

AFIT-ENG-MS-18-M-063

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
PA APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-063

EXPECTED COVERAGE (EXCOV): A PROPOSAL TO COMPUTE FUZZ

TEST COVERAGE WITHIN AN INFINITE INPUT SPACE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Evan V. Swihart, B.S.E.E.

March 2018

DISTRIBUTION STATEMENT A:
PA APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-MS-18-M-063

EXPECTED COVERAGE (EXCOV): A PROPOSAL TO COMPUTE FUZZ

TEST COVERAGE WITHIN AN INFINITE INPUT SPACE

THESIS

Evan V. Swihart, B.S.E.E.

Committee Membership:

Maj T. Carbino
Chair

Dr. S. Graham
Member

Dr. B. Mullins
Member

Mr. C. Sielski
Member

AFIT-ENG-MS-18-M-063

Abstract

A Fuzz test is an approach used to discover vulnerabilities by intentionally sending

invalid inputs to a system for the purpose of triggering some type of fault or unin-

tended effect that renders the system vulnerable to an exploit. Fuzz testing is an

important cyber-testing technique used to find and fix vulnerabilities before they are

exploited. The fuzzing of military data links presents a particular challenge because

existing fuzzing tools cannot be easily applied to these systems. As a result, the tools

and techniques used to fuzz these links vary widely in sophistication and effective-

ness. Because of the infinite, or nearly infinite, number of possible fuzzed messages

that can be sent on a military data link, measuring the coverage of a fuzz test is not

straightforward. This thesis proposes an understandable and meaningful metric for

protocol fuzz testing called ExCov. This metric computes the coverage of a fuzz test

set from a probabilistic model of vulnerability occurrence and defines coverage as the

expected percent of existing vulnerabilities discovered by a set of test cases. This

metric enables the acquisitions community to more succinctly write weapons system

requirements for cyber security. Furthermore, it quantifies the number of faults and

vulnerabilities that are expected to be found by a set of test cases, which provides

decision makers with valuable information to make more informed choices on whether

or not to perform additional testing. As a result, industry will be better equipped to

determine cost and effort when performing cyber vulnerability testing. In addition,

industry will also be able to more concretely represent the results of the cyber testing

they perform. ExCov was implemented in a suite of tools called ExFuzz, and these

tools were used to compare and contrast military data link fuzz testing techniques

that are in use today. By assessing these current methods using the ExCov metric,

iv

optimal bit flip probabilities for the mutative fuzzing of three custom protocols was

found. A generative fuzzer was also built based on the metric and was shown to

outperform mutative and manual generation strategies in nearly every case.

v

Table of Contents

Page

Abstract . iv

List of Figures . viii

List of Tables . x

I. Introduction . 1

1.1 Redefining the Air-gap for Our Weapon Systems . 1
1.2 Motivation for Thesis . 13
1.3 Thesis Overview. 14
1.4 Fuzzing Framework . 15
1.5 Assessing Fuzz Tests . 18

II. Related Work . 22

2.1 Fuzz Testing . 22
2.1.1 In The Literature . 22
2.1.2 In Practice . 25

2.2 Adequacy Criterion . 28
2.2.1 In Software Testing . 28
2.2.2 In Fuzzing . 29
2.2.3 Fundamental Axioms . 31

III. Creating the Criterion . 33

3.1 Field Coverage . 34
3.1.1 Coverage With Known Vulnerabilities . 36
3.1.2 Estimating Coverage . 43
3.1.3 Special Cases . 48

3.2 Test Set Coverage . 63
3.2.1 First Order Coverage . 63
3.2.2 Nth Order Coverage . 68
3.2.3 Structure Fields . 75
3.2.4 Combining Coverage Orders . 78

3.3 Approximating Vulnerability Distributions . 80
3.3.1 Open Source Protocol Analysis . 81
3.3.2 Standard Field Vulnerability Distribution . 82
3.3.3 Numeric Field Vulnerability Distribution . 87
3.3.4 Other Special Field Types . 91

3.4 Coverage Calculation Procedure . 93

vi

Page

IV. Implementing the Criterion . 97

4.1 Creating a Data Model . 98
4.1.1 Peach Pit Modeling . 99
4.1.2 Custom Peach Pit Extensions . 102
4.1.3 DataModel Tool . 105

4.2 Building a Coverage Calculator . 106
4.3 Building a Generative Fuzzer . 109

V. Results and Discussion . 114

5.1 Mutative Fuzzing Methods . 114
5.1.1 Fully Random Bits . 115
5.1.2 Partially Random Bits . 116

5.2 Generative versus Mutative Fuzzing . 126
5.2.1 Simple Protocol . 126
5.2.2 Meal Protocol . 128
5.2.3 Restaurant Locator Protocol . 129

5.3 Generative versus Manual Fuzzing . 131
5.3.1 Simple Protocol . 132
5.3.2 Meal Protocol . 133
5.3.3 Restaurant Locator Protocol . 134

VI. Future Work and Conclusion . 136

6.1 Future Work . 136
6.2 Conclusion . 138

Appendix A. Terms and Definitions . 140

Appendix B. Protocol Examples . 145

B.1 Simple Protocol . 145
B.2 Meal Protocol . 146
B.3 Restaurant Locator Protocol . 149

Appendix C. Coverage Calculator Application Example . 155

C.1 First Order Coverage . 157
C.2 Second Order Coverage . 160
C.3 Combining for Final Result . 164

Appendix D. Open Source Protocol Vulnerability Data . 165

Bibliography . 169

vii

List of Figures

Figure Page

1. Protocol Fuzz Testing Overview . 15

2. AutoFuzz Set-up . 24

3. T-Fuzz Set-up . 25

4. Illustration of Field Spaces . 36

5. Proof Finding an Alternate Definition for Vulnerability
Expectation . 41

6. Coverage of the Example Field . 44

7. Coverage Using a Basic Vulnerability Model . 47

8. Repeating Relation Spaces Illustration . 51

9. Specific Coverage Before Value Weighting . 57

10. Specific Coverage After Value Weighting . 60

11. Illustration of Second Order Spaces . 69

12. Day and Month Field Combination Illustration . 70

13. Repeating Choice Field Combination Spaces . 78

14. Non-numeric Estimated Vulnerability Sizes . 83

15. Non-Numeric Least Squares Fit . 84

16. Numeric Estimated Vulnerability Lengths . 88

17. Numeric Estimated Vulnerability Positions . 89

18. Numeric Least Squares Fit . 90

19. MIL-STD-1553B Command Word . 100

20. MIL-STD-1553B Command Word in Peach . 100

21. Rule Set Peach Extension Example . 103

22. DataModel I/O. 105

viii

Figure Page

23. Restaurant Locator Protocol Node Map . 107

24. ExCov I/O . 108

25. GenFuzz I/O . 109

26. ExCov output on Partial GenFuzz Test Set . 112

27. ExCov output on Full GenFuzz Test Set . 113

28. Exclusive Mutation on Mutation Coverage . 117

29. Partial Mutation on Mutation Coverage . 120

30. Partial Mutation on Mutation and Expected Bit Flips
Coverage . 121

31. Optimal Bit Flips for Simple Protocol . 123

32. Optimal Bit Flips for Meal Protocol . 124

33. Optimal Bit Flips for Restaurant Locator Protocol 125

34. Generation Comparison: Simple Protocol . 127

35. Generation Comparison: Meal Protocol . 128

36. Generation Comparison: Restaurant Locator Protocol 129

37. Bit Map: Simple Protocol . 146

38. Message Structure: Meal Protocol . 146

39. Bit Maps: Meal Protocol . 147

40. Message Structure: Restaurant Locator Protocol 150

41. Bit Maps: Restaurant Locator Protocol . 151

42. Example Protocol Diagram . 155

43. Repeating Choice Spaces Calculation . 164

ix

List of Tables

Table Page

1. First Test Case Outcomes . 39

2. Field Coverage Equation Lookup . 66

3. Test Case Coverage Possibilities . 73

4. Pattern Resulting from a few Jumps . 110

5. Fully Random Fuzzing Results . 115

6. Manual Fuzzing: Simple Protocol . 132

7. Manual Fuzzing: Meal Protocol . 134

8. Manual Fuzzing: Restaurant Locator Protocol . 134

9 List of Acronyms . 140

10 List of Key Terms . 140

11 Meal Protocol Fields . 148

12 Restaurant Locator Fields . 152

13 Example Protocol Fields . 156

14. Example Test Cases . 157

15. Test Case Parsing . 158

16. Field Coverage Results . 159

17. Second Order Field Combinations . 162

18. Finding the Size of Second Order Invalid Spaces 163

19 Open Source Protocol Data . 165

x

EXPECTED COVERAGE (EXCOV): A PROPOSAL TO COMPUTE FUZZ

TEST COVERAGE WITHIN AN INFINITE INPUT SPACE

I. Introduction

Vulnerability discovery is a key task when securing any type of digital system.

When that system is a vehicle, aircraft, or missile, the implications of a malicious

actor discovering and exploiting a vulnerability are grave. Security researchers must

identify and fix these vulnerabilities before a bad actor finds and exploits them.

The development of effective and efficient methods of vulnerability discovery is an

important step in the effort to secure all types of embedded systems. One approach

to vulnerability discovery involves sending intentionally invalid inputs to a system in

the hopes of triggering some type of fault or unintended effect that may be render

the system vulnerable to an exploit. This type of invalid input testing is called fuzz

testing, or fuzzing.

1.1 Redefining the Air-gap for Our Weapon Systems

Effective negative testing is an important part of cyber defense. In embedded

weapon systems, data flows between many different sub-systems, using a myriad

of different protocols. Fuzz testing can be used to identify messages that, if sent

between these sub-systems, may impact a system’s performance or compromise a

system entirely. The following paper, [23], motivates the need more for negative

testing, including effective fuzz testing, from a deterrence policy perspective. The

paper was co-authored by Evan Swihart and Lt Col Mark Reith and was accepted to

the March 2018 International Conference on Cyber Warfare and Security.

1

Redefining the Air-gap for Our Weapon Systems

Evan Swihart, Lt Col Mark Reith

1. The threat

There are many reasons the adversary may want to look beyond the traditional

battlefield of TCP/IP enterprise networks and target the cyberspace of our weapon

systems. Two major reasons are the low cost, both financial and political, and the

high impact of such an attack.

The cost to stand up programs to design, build, and deploy systems capable

of kinetically destroying air assets can easily be in the billions of dollars (National

Priorities Project, 2017). While it is difficult to estimate the cost of standing up

a cyber program capable of incapacitating our air systems, it is certainly orders

of magnitude less. Cyber exploits are also politically cheap. Since cyber-attack

attribution is difficult, perpetrators can hide behind a veil of plausible deniability.

When accused of an attack, the adversary can claim to have nothing to do with it

and avoid international and domestic political consequences for the action. Prominent

likely state sponsored cyber-attacks such as Stuxnet (Kushner, 2013), the Ukrainian

Power Plant hack (Zetter, 2016), and the Sony hack (Zetter, 2014), all have the

common theme of no state claiming responsibility. If a cyber-attack targets our

weapon systems, we can expect attribution to be difficult and any retaliation attempt

to be complicated. In contrast, attribution of a kinetic attack against our weapon

systems will be simple, and the perpetrators will likely face a kinetic response.

The scope of the damage that could be caused by a cyber-attack on our weapon

systems may also entice an adversary. A kinetic weapon is designed to destroy assets

one at a time, and destroying a single asset has little effect on the other assets. Cyber

weapons operate differently. They are designed to target a vulnerability that exists

2

in all systems of the same or similar configuration. Therefore, these weapons can be

targeted at a type of system rather than a single asset. They can be delivered in a

variety of ways including a supply chain attack (Shackleford, 2015), where modified

parts find their way into each asset, or the compromising of equipment on the flight

line which will touch many aircraft. Thus, a single cyber weapon could incapacitate

an entire type of weapon system.

2. Our weakness

We may not be prepared to treat our systems as contested cyberspace. Our current

approach to acquisitions and weapon system design assumes our systems are free of

adversarial interference. This assumption magnifies the effect a successfully delivered

cyber weapon would have on our systems. For example, when an avionics box is added

to a data bus on an aircraft, we design and test the box to function properly with

everything else on that bus. We often do not design for or test what would happen if

unexpected and invalid messages are sent to our new box. Should one terminal on a

data bus be compromised such that it sends invalid messages out on the bus, we may

have no idea how every receiving terminal would react. Similarly we often trust other

friendly systems external to our weapon systems such as navigational aids like GPS,

tactical data links, and mission and key loading equipment to be free of adversarial

interference. We often do not design or test for the case that they are not.

It is entirely understandable why this assumption of trust has prevailed in our

thinking thus far. It is a simple and logical conclusion that since these weapon

systems are not physically connected to the Internet or the DoD Information Network

(DoDIN), the adversary can not cause any cyber effects on a platform without physical

access. In fact, weapon systems are specifically excluded from the definition of the

DoDIN (Defense Acquisition University, 2017). This notion of security by air-gap

is flawed (Guri et al, 2014). Reliance on data and computer networks for weapon

3

system operations means that exchanges of information across the air-gap are common

and even required for functionality. Information can reach an air-gapped weapon

system over RF, through maintenance and test equipment, through mission loads,

via attachable hardware like weapons and other pods, or even in counterfeit parts

slipped into the supply chain. Malicious information can find its way into a weapon

system through any of these channels.

Our requirements writing and testing practices reflect our misplaced trust in the

integrity of our systems. We write requirements for systems to correctly receive and

process valid inputs. We then test that the system that is delivered meets these

requirements. This is considered positive testing as it tests if the system handles

valid inputs as it should. Since we trust other systems to send only valid inputs,

there has been no reason to write requirements for systems to handle invalid inputs.

And since we only test that the delivered system meets its requirements, we generally

do not test invalid inputs. If we did test invalid inputs, we would call this testing

negative testing. Negative testing is crucial to understanding how a cyber-attack

would affect a weapon system. In conventional networks, input validation is a high

priority security control (National Institute of Standards and Technology, 2013); it

should be in embedded systems as well. Without any requirements or testing aimed

at preventing cyber effects from propagating throughout our systems, there is no way

we can defend this space.

3. Rethinking the air-gap

It is clear that the acquisitions process for our weapons systems will need to be

reformed to adapt to the threat of cyber warfare in our weapon systems. In response

to this threat, the Air Force Material Command has started the Air Force Cyber

Campaign Plan which aims to address this issue through seven lines of attack (LOAs)

(Gross, 2016). The recommendations in this paper can, and in some cases are, being

4

implemented under LOAs 1, 2, 4 and 6.

We can deter the adversary from contesting the cyberspace of our weapon sys-

tems by designing and testing systems that make cyber exploitation very difficult,

unreliable and costly. This can be done by focusing on two key elements that make

cyber exploits possible, an access vector to the system and persistence and mobility

once inside the system. If we successfully deter the adversary from contesting the

cyberspace of our weapon systems, we can effectively consider these systems to be

air-gapped. That is, we can consider the cyber space of our weapon systems to be

distinctly separate and secure from the DoDIN and Internet.

3.1 Preventing access

There are two key actions we can take to prevent the adversary from accessing our

weapon systems. First, we can write requirements that require the proper handling

of invalid inputs from external sources, and test that these requirements have been

met. This will reduce the number of flaws in our systems that could be exploited

by an adversary to gain access. Many systems handle data coming and going from

a platform before during and after a mission. A key access vector is exploiting flaws

in the protocol or implementation of these data links to move malicious informa-

tion to the air platform. This can be countered by recognizing that, unlike in the

TCP/IP enterprise world, the adversary will have limited access to these peripheral

sub-systems to test their cyber weapons. Since we do have access to them, a small bit

of negative testing of the most vulnerable message types would reveal the most likely

exploits at a fraction of the investment the adversary would need to make to discover

them. For new and upgraded systems, requirements should be added to ensure that

such invalid inputs are gracefully handled by the system. Fixing these vulnerabilities

would vastly increase the sophistication of the cyber weapon the adversary would

need to compromise a weapon system. With limited access to the system, creating

5

this weapon would prove a difficult task for the adversary.

It is worth pointing out that this argument relies heavily on the discredited idea

of security by obscurity (Open Web Application Security Project, 2017). The idea

of security by obscurity in computer networks is flawed because, as it turns out,

when more people look at a system and find flaws, many act responsibly and report

the flaws, thus a more secure system can be built. This logic does not apply to

weapon systems. The only people with the means and will to test these systems,

even if component designs were public, are nation states. For these reasons, only

our adversaries would benefit from the public release of our weapon systems designs.

Therefore, security by obscurity is a valid security method in this context.

Second, for other types of access to the platforms systems such as data loads,

attestation may make it far more difficult for the adversary to gain access to a system

(Seshadri et al, 2004). Attestation is a tool used to verify that data has not been

modified by comparing values in memory to a trusted copy. If we implement attes-

tation at key points where instructions to the weapon system are inputted, we may

be able to detect moderately sophisticated attempts to force the system to perform

in an unexpected way. Attestation can be used to verify that one of a discrete and

proven set of valid instructions is loaded to ensure no malicious instructions slip onto

our systems. It can also help prevent supply chain attacks by ensuring malicious

information is not present in a system before it is installed by cross checking software

loads against proven versions.

3.2 Preventing persistence and mobility

In addition to making access to our systems more difficult and expensive for

our adversaries, we can also mitigate the effects of their cyber weapons should they

gain access. This will not only reduce the effect of cyber weapons used against

our embedded weapon systems, but also reduce the incentive for adversarial action.

6

Attestation can also be used for this purpose by preventing malicious code from

persisting in our weapon systems. By regularly comparing the software loaded in

systems on the aircraft with proven copies elsewhere, illegal modifications can be

detected. This will make it harder for the adversary to persist if they find a way to

access a weapon system.

One way of preventing malicious information from spreading through a weapon

system is to use simple data transfer schemes inside the platform that limit the

possible data each element in the system can transmit or receive. By limiting the

transferable data, the variety of inputs each system may receive is reduced. This

will make it much harder to transfer bad or malicious data throughout the system.

In TCP/IP Enterprise networks, computers are usually general purpose, so limiting

their ability to pass types of data would be detrimental to their performance. In

embedded systems however, the elements are specialized, and limiting their inputs

and outputs will not greatly affect their operation. There are a number of efforts to

standardize the information passed between components in a weapon system. They

include Open Mission Systems (Virtual Distributed Laboratory, 2017) and Future

Airborne Capability Environment (The Open Group, 2017).

Another way to prevent the spread of malicious information inside a weapon sys-

tem is to once again require systems to properly handle invalid inputs. This will

reduce the risk that an invalid message sent from one trusted, compromised subsys-

tem to another uncompromised system will cause the uncompromised system any

problems. Rigorous negative testing on data busses inside our systems can reveal

these types of vulnerabilities and correcting them will make it very difficult for cyber

effects to spread through our systems.

3.3 Preventing persistence and mobility

So far this paper has discussed security solutions that focus on improving our

7

design, our testing and our verification of data before and after missions. A natural

question to ask is, Should we do more to actively detect cyber intrusions into our

weapon systems? In computer networks, intrusion detection systems (IDS) do just this

(Rowland, 2002). Research has been done that extends IDSs into embedded systems

with some success (Tabrizi and Pattabiraman, 2015). An IDS on an aircraft has

even been proposed (Buehler and Duffner, 2017). However there are two fundamental

requirements for IDSs to be effective that may be difficult to realize in the environment

of our embedded weapon systems. Even if we can support these requirements, the

nature of our weapon systems suggests that IDSs will not be very effective in this

domain.

First, IDSs require some space, physical or digital, to reside. A network based IDS

would need wired connections to all the different busses on an aircraft and a place

to reside that could accommodate the necessary data ports. Given the size weight

and power limitations on aircraft, this could prove challenging to accommodate. In

addition to this, unlike common lower layer protocols that make up computer net-

works like Ethernet and 802.11, military data busses may not easily accommodate

interloping devices. Busses running at different levels of classification also presents

a challenge to network based IDSs. An alternative to network based IDSs is host

based IDSs where the software resides on hosts instead of in its own space (Tabrizi

and Pattabiraman, 2015). This solves some of the problems of network IDSs, but

requires every piece of avionics to be updated with this new software. Surely it would

be easier and cheaper to update the avionics to simply not process any messages an

IDS would discover, rather than implement an IDS on top of the equipment.

The second requirement for an IDS is some sort of database that allows the soft-

ware to detect malicious traffic. To build this database, aircraft systems would need

to be studied in many different environments to construct a profile of valid and invalid

8

traffic. If this study is completed, we might as well use the information to update

systems to accept and process data that meets the valid profile rather than implement

a separate IDS system. IDS in traditional computer networks makes sense because

traffic unusual for that specific network can be detected and stopped without compro-

mising the general purpose nature of the hosts. Nothing is general purpose in avionics

however, so it makes sense to limit what hosts receive instead of implementing an IDS.

4. Deterring the adversary

Implementation of these practices will not be cheap. Investments in additional

testing, the development and deployment of attestation, and new requirements on

input checking are sure to drive up the acquisition costs of our weapon systems.

However, making this investment will force the adversary to either invest more heav-

ily to defeat our cyber defenses, or to revert to opposing our weapons-systems by

conventional, kinetic means. The embedded system nature of our weapon systems

means that our investment in security would require a much larger investment by the

adversary to overcome.

Since these systems are often designed for use only by the DoD and trusted allies,

the cost to the adversary to acquire them to identify vulnerabilities is higher than our

cost to acquire them for testing. Also, since the data flowing on an aircrafts busses

can be completely specified and standardized, the aircrafts systems can be designed

to drop invalid messages and receive and transmit only valid information. This de-

grades the ability of the adversary to affect a secure subsystem from a compromised

subsystem and thus limits the affect an adversary can have.

With reduced ability to access the cyberspace of weapon systems, and virtually no

ability to spread malicious information once inside a weapon system, the cost benefit

calculation of the adversary would shift and incentivize vacating this cyber battlefield.

In effect, the concept of an air-gap would be restored and the weapon systems would

9

be removed from contested cyberspace. With vigilance, good security practices, and

testing, we can prevent the adversary from deciding it will be worth their effort to

contest the cyber space of our weapon systems ever again.

5. Conclusion

Extending cyber war to the domain of our embedded weapon systems is a low-

risk high reward venture for our adversaries. We are currently at a disadvantage

while defending this terrain because our approach to weapon system acquisition and

design supposes these systems are free of adversarial interference. We risk losing our

ability to project conventional air power should an adversary sufficiently disrupt these

systems. However, due to the unique design of embedded weapon systems, there is an

opportunity to deter the adversary from contesting this space with key investments

in negative testing, requirements to block invalid and potentially malicious data, and

promising technologies such as attestation for embedded systems. These investments

would deter the adversary from contesting the cyberspace of our weapon systems,

providing the effect of an air-gap between them and the cyber battlefields of the DoD

Information Network and larger Internet.

Works Cited

� Buehler E. and Duffner, K. (2017) Avionics intrusion detection system and method of deter-

mining intrusion of an avionics component or system, US Patent, 9,591,005.

� Defense Acquisition University, Glossary of Defense Acquisition Acronyms and Terms, ac-

cessed 25 July 2017 Department of Defense Information Network (DoDIN), [online],

https://dap.dau.mil/glossary/pages/3348.aspx.

� Gross, C. (2016) AFMC commander says cyber threats are real, need to get ahead of them,

[online], US Air Force News Service,

10

http://www.af.mil/News/Article-Display/Article/951715/afmc-commander-says-cyber-threats-

are-real-need-to-get-ahead-of-them/.

� Guri, M., Kedma, G., Kachlon, A. and Elovici, Y. (2014) AirHopper: Bridging the air-

gap between isolated networks and mobile phones using radio frequencies, 9th International

Conference on Malicious and Unwanted Software: The Americas (MALWARE), pp. 5867.

� Kushner, D. (2013) The Real Story of Stuxnet, [online], IEEE Spectrum,

http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet.

� National Institute of Standards and Technology, (2013) Special Publication 800-53 (Rev. 4):

Security Controls and Assessment Procedures for Federal Information Systems and Organi-

zations, pp. F-229-230.

� National Priorities Project, accessed 28 July 2017 Analysis of the Fiscal Year 2012 Pentagon

Spending Request, [online],

https://www.nationalpriorities.org/analysis/2011/analysis-fiscal-year-2012-pentagon-spending-

request/?redirect=cow.

� Open Web Application Security Project, accessed 17 August 2017 Security Design Principles,

[online],

https://www.owasp.org/index.php/Security by Design Principles.

� Rowland, C. (2002) Intrusion detection system, US Patent, 6,405,318.

� Seshadri, A., Perrig, A., Van Doorn, L. and Khosla, P. (2004) SWATT: software-based attes-

tation for embedded devices, IEEE Symposium on Security and Privacy, 2004, Proceedings,

pp. 272282.

� Shackleford, D. (2015) Combatting Cyber Risks in the Supply Chain, SANS Institute.

� Tabrizi, F.M. and Pattabiraman, K. (2015) Intrusion Detection System for Embedded Sys-

tems, Proceedings of the Doctoral Symposium of the 16th International Middleware Confer-

ence on - Middleware Doct Symposium 15, pp. 14.

� The Open Group, accessed 26 July 2017 About the FACE Consortium, [online],

http://www.opengroup.org/face/about.

� Virtual Distributed Laboratory, accessed 26 July 2017 Open Mission Systems (OMS), [online],

Air Force Research Laboratory, https://www.vdl.afrl.af.mil/programs/uci/oms.php.

11

� Zetter, K. (2014) The Evidence that North Korea Hacked Sony is Flimsy, [online], Wired,

https://www.wired.com/2014/12/evidence-of-north-korea-hack-is-thin/.

� Zetter, K. (2016) Everything We Know About Ukraines Power Plant Hack, [online], Wired,

https://www.wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/

12

1.2 Motivation for Thesis

The preceding paper calls for rigorous negative testing. It states, “Rigorous neg-

ative testing on data busses inside our systems can reveal ... vulnerabilities and

correcting them will make it very difficult for cyber effects to spread through our

systems.” [23] This thesis advances the negative testing technique of fuzzing by pre-

senting a tool that improves test case selection compared to the tools and methods

in use by the Air Force today.

The paper also states that the Air Force must “Write requirements that require the

proper handling of invalid inputs” and “test that these requirements have been met”.

[23] To put such a requirement on contract, the Air Force needs to specify a testing

approach that can determine if invalid inputs are being handled properly. Every

possible invalid input cannot feasibly be tested, so it is important that the testing

approach provides high coverage to give testers confidence that if vulnerabilities exist,

they will be found.

Currently there is no way to quantitatively compare testing approaches, so it is

hard to say with confidence which approaches provide high coverage. This thesis

proposes a method for measuring the coverage of a fuzz test, thereby making it

possible to compare testing approaches. The proposed method also provides meaning

to the coverage metric, so that if a fuzz test provides 50% coverage, it can be said

that the test expects to uncover 50% of all existing vulnerabilities. This information

could allow for requirements that let the contractor decide the testing method and

instead require their system to be, for example, “fuzz tested to 90% coverage.” Not

only does this allow the contractor flexibility to meet the requirement, but it provides

risk managers with an indication of the probability that vulnerabilities remain in the

system.

13

1.3 Thesis Overview

Broadly speaking, vulnerability discovery efforts can be placed into three cate-

gories based on the information available to the security tester: white box, gray box,

and black box testing. In white box testing, the tester has complete access to infor-

mation about the System Under Test (SUT). In black box testing the tester has little

or no information about the inner workings of the SUT, and can only observe the

outputs of the system for any applied input. Gray box testing is somewhere between

black and white box testing. Often gray box testing is associated with having access

to compiled binaries and some documentation and involves some reverse engineering

as well as black and white box testing techniques.

This thesis focuses on a technique used in black and gray box testing called fuzzing.

According to [22], “Fuzzing is the the process of sending intentionally invalid data to

a product in the hopes of triggering an error condition of fault.” More specifically,

this thesis focuses on protocol fuzzing as opposed to other types of fuzzing such as file

format fuzzing or web application fuzzing. Protocol fuzzing involves creating input

messages that do not meet the requirements of a protocol specification or standard,

injecting the bad messages onto a link, and then assessing the receiving system for

faults or unexpected behavior that may indicate a vulnerability is present.

The main focus of the thesis is the generation of input messages for this process.

It provides the following four contributions:

1. A coverage criterion and coverage calculator that quantitatively assess the ef-

fectiveness of a fuzz test. Section 1.5 introduces the basis for this criterion,

Chapter III is devoted to the development of this criterion and Section 4.2 dis-

cusses the implementation of the criterion in the form of a coverage calculator

application.

14

2. A method of representing a protocol specification in an XML file called a data

model, and an application that converts this file to a C++ object for use by

other applications. Section 4.1 covers this method and application.

3. A generative fuzzing application that automatically generates a high coverage

test set based on a data model. This application is covered in Section 4.3.

4. A comparison of the coverage provided by a number of fuzz test sets that are

generated in a variety of ways. Chapter V is devoted to this topic.

1.4 Fuzzing Framework

A fuzz test consists of many different components. The tester needs a way to

create a set of fuzzed inputs, a method to assess the effectiveness of the test set, a

way to deliver the messages, and a means of assessing the messages’ impacts on the

SUT. A fuzzing framework can be used to encapsulate all of these aspects in a single

process. Figure 1 illustrates a general fuzzing framework and shows the input output

- 1 -
Protocol

Recording

- 1 -
Protocol

Recording

- 2 -
Protocol
Model

- 2 -
Protocol
Model

- 3 -
Mutative

Fuzzer

- 3 -
Mutative

Fuzzer

- 4 -
Generative

Fuzzer

- 4 -
Generative

Fuzzer

- 5 -
Test Set

- 5 -
Test Set - 6 -

System Under
Test

- 6 -
System Under

Test

- 7 -
Agent
- 7 -

Agent

- 8 -
Coverage Calculator

- 8 -
Coverage Calculator

Test Set
Coverage

Potential
Vulnerabilities

Outputs

Fuzz TestingTest Set Generation

Figure 1. An Overview of Protocol Fuzz Testing

15

relations between components in the test. The figure was partially based on an image

found in [5]. The following list explains each component and its role in the thesis:

1. Protocol Recording: A recording of valid data being passed to the system

under test. These recordings can be mutated by a mutative fuzzer to generate

fuzz test cases. This thesis simulates protocol recordings by generating them in

specially designed spreadsheet tools. This method of fuzz testing is compared

to others in Chapter V.

2. Protocol Model: A model of the protocol specification that defines the mean-

ing of binary data in a data link. A generative fuzzer requires such a model to

build fuzz test cases. This model is also required to compute coverage. It is in

this model that a tester can convey knowledge of potentially vulnerable fields

or values. For this thesis, a protocol model is also called a data model and takes

the form of an XML document. The structure of this document is a modified

version of the Peach Pit format used by the fuzzing platform, Peach [10].

3. Mutative Fuzzer: A mutative fuzzer operates on a recording of valid traffic

of the protocol to be fuzzed. It mutates various aspects of these recordings

to make them invalid. The output of a mutative fuzzer is a set of test cases

to be tested against a system. If a data model for the protocol exists, the

coverage of these test cases can be calculated. In this thesis, the coverage of the

test sets generated by mutative fuzzers will be compared to those generated by

generative fuzzers in Chapter V.

4. Generative Fuzzer: A generative fuzzer takes the specification of the protocol,

or the data model, and builds test cases from it. This thesis involves building a

generative fuzzer, discussed in Section 4.3, that provides high coverage based on

the coverage criterion described in Chapter III. The generative fuzzing approach

16

is compared to other approaches in Chapter V.

5. Test Set: A set of test cases to be applied to the system under test. These

messages can be generated by a mutative or generative fuzzer, or can even be

crafted manually. The coverage these test cases provide can be computed using

the coverage criterion described in Chapter III with knowledge of the protocol

model. Knowledge of the coverage of the test set can help the tester make

decisions about further testing and risk management.

6. System Under Test: The SUT is the hardware and software that is being

fuzzed in the fuzz test. In this thesis, the SUT primarily being considered is

a military data link radio and the other hardware and software systems that

process the data received from the link.

7. Agent: The agent is responsible for monitoring the SUT and detecting if a

vulnerability has been discovered. If so, the agent correlates the vulnerability

with the input that caused it. The agent can simply be a human monitoring

the system as the test progresses, but if the agent is automated, the test may

be able to run much faster. An automated agent also allows for a real-time

feedback loop from the agent to the test set generation element. This allows

for “smart fuzzing” where the test sets being applied are selected based on the

effect of previous tests. Unfortunately for the military data link systems under

consideration here, the creation of an automated agent is a major challenge.

Since this thesis focuses on the test set generation side of the framework, the

agent will not be discussed further in this thesis.

8. Coverage Calculator: The coverage calculator is an application that takes a

protocol model and a set of test cases and returns the coverage percentage of

those test cases based on the coverage criterion defined in Chapter III. For this

17

thesis, a coverage calculator was created to demonstrate the feasibility of the

proposed coverage criterion. It is also used to compare different approaches to

test set generation in Chapter V.

Using this framework, at the conclusion of a fuzz test the tester will have not only

a list of potential vulnerabilities, but also a metric for the effectiveness of the test.

This metric will allow the tester and user of the system to understand the likelihood

that the test missed a vulnerability, and base further testing and operational decisions

on that knowledge. It is a definition of this metric that is the primary contribution

of this thesis.

1.5 Assessing Fuzz Tests

There is effectively an infinite number of test cases that can be applied to any

major system. Consider the navigation message of the Global Positioning System

— Standard Positioning Service (GPS-SPS). One sub-frame of this message is 300

bits long and takes 6 seconds to transmit [4]. This means that there are 2300 =

2.04 × 1090 possible sub-frames. At 6 seconds a piece it would take 1.22 × 1091

seconds or 3.87 × 1083 years to transmit every possibility. Considering the universe

is a mere 1.38× 1010 years old, such a test length is unacceptable. This is all before

considering that the GPS-SPS message consist of 5 sub-frames, some of which are

interpreted differently depending on when they are sent.

Since testing every possible input is not feasible, the tester must select a subset

of possible inputs to test. There is no obvious approach to selecting these inputs.

The tester, having some experience with the SUT, may have some inclinations about

inputs that could prove problimatic. And some inputs, like valid ones, would not

contribute to the fuzz test at all. The tester could manually create a test set based

on expertise with the system. This would be time consuming, but provide a short

18

test that covers the most crucial inputs. A test set could also be generated randomly

by a computer. This method could quickly create many test cases, but their quality

wouldn’t be as good, relying on chance to generate the most suspicious inputs.

A further challenge is assessing the quality of a test set. The term “coverage” is

often used as an intuitive descriptor of the effectiveness of a test set, but this term has

yet to be precisely defined. A test set manually crafted by an expert with knowledge

of the protocol is bound to be more effective, and thus provide more coverage, than a

randomly generated set of the same size. But how would testers compare a manually

crafted set of 100 inputs to a randomly generated set of 10,000? Does the increased

number of randomly generated test cases make up for the lack of insight used in their

generation? What if the tester built a tool that automatically generated 1000 inputs

based on the most vulnerable areas of the protocol? How would its coverage compare?

The main reason these questions are difficult to answer is that there is no quan-

titative measure for the effectiveness, or coverage, of a fuzz test. In the literature,

the measure of effectiveness, or adequacy, of a test is called an adequacy criterion

or testing criterion [11], [29]. Colloquially, the effectiveness of a test as the test’s

coverage, and the method of measuring this coverage is reffered to as the coverage

criterion.

Software testing coverage criterion have been well researched and applied in the

past few decades, however these criterion are rarely applicable to fuzz testing. There

are two attempts to define a fuzzing coverage criterion in the literature. One, [14],

defines coverage based on state transitions, and the other [26], defines it based on

tester defined constraints extracted from the protocol specification. Both of these

approaches have advantages, but neither defines coverage in a way consistent with

what the term suggests. That is, if these criterions return a coverage of 100%, they

may still miss some vulnerabilities. Also, the meaning of any coverage value found

19

based on these criterions requires an in depth understanding of what the criterion is

measuring exactly. They, and other coverage criterion approaches are discussed in

Chapter II.

In this thesis a new definition of coverage is proposed that is rooted in providing an

understandable metric that stands for something meaningful. By using such a metric,

a tester can make accurate assessments of the effectiveness of different methods of

fuzzed test set generation. Furthermore, a tester can make informed decisions about

how much to test, and can accurately assess the risk that a test missed vulnerability.

Since the goal of a fuzz test is to uncover vulnerabilities, it should be measured based

on its ability to do just that. Therefore this thesis proposes a coverage criterion with

the term coverage defined as the expected percent of existing vulnerabilities discovered

by a set of test cases.

This metric is not simple to calculate, but has real meaning if calculated success-

fully. For example, if a fuzz test is found to have a coverage of 90%, a tester can

say with confidence that, based on the information available, this test is expected to

uncover 90% of the existing vulnerabilities. Perhaps there is a more time consuming

and expensive test that could increase coverage to 95%. If the tester knows that the

first test found 9 vulnerabilities, it can be said that the second test expects to find

0.5 more vulnerabilities. Now the decision of whether or not to perform the more

expensive test can be made based on this quantitative information.

For this metric to be successful, it must be able to incorporate everything the tester

knows about a protocol and the nature of vulnerabilities in general. The metric cannot

possibly provide the exact number of vulnerabilities a test will uncover, that would

require knowing them ahead of the test, but it can provide a probabilistic estimate

based on all the information available. The more information about a protocol and

about how vulnerabilities manifest in protocols that is incorporated into the criterion,

20

the more accurate the criterion can be.

Chapter III derives the equations necessary to compute the coverage of a set of test

cases based on our definition of coverage. To do this, it makes some assumptions about

the nature of vulnerabilities, but it is designed to be adaptable to new information that

changes these assumptions. The method also allows for tester input about features of

the protocol that will influence the coverage metric. For example, known or suspected

vulnerable inputs can be supplied to the coverage calculator so that the increased

likelihood a vulnerability is present there is reflected in the metric.

In order to compute the coverage of any test set, a model for the associated

protocol must be created. The structure of this model, called a data model, is based

off the data model used in an existing commercial fuzzing framework. This model

carries all the information about the protocol structure and potentially vulnerable

inputs that the coverage calculator requires to compute an accurate coverage value.

The creation of this model is discussed in Chapter IV.

The newly created coverage criterion was implemented in a coverage calculator as

part of this thesis. The calculator demonstrates that the criterion is implementable,

and in Chapter V, the calculator is used to compare test set generation techniques and

to provide answers to some of the questions posed earlier such as: does 100 manually

crafted inputs or 1000 randomly generated cases provide more coverage?

21

II. Related Work

In this chapter, the history of fuzzing will be briefly discussed as well as a snapshot

of the current state of the art in protocol fuzz testing. From there the chapter con-

siders two prominent fuzzing frameworks and explains how they influenced elements

of this thesis, and how they may or may not be applied to military data link systems.

The final section discusses the history of software test assessment and explains the

development of the coverage criterion concept. This section also considers, in-depth,

two coverage criterion for fuzz testing and explains why the criterion proposed in this

thesis is a necessary addition.

2.1 Fuzz Testing

2.1.1 In The Literature.

The first mention of fuzzing in the scientific literature dates back to 1990 when a

study sought to test the reliability of UNIX applications [18]. The researchers supplied

random character inputs to a number of applications and monitored for crashes. The

program they used to generate the random characters was called fuzz. Little more was

done in the decade until researchers at the university of Oulu began work on a test

suite called PROTOS in 1999 [13]. This set of tools was capable of delivering packets

that did not meet the proper protocol specifications. These malformed packets could

be used to test the robustness of network interfaces and expose implementation errors.

Shortly thereafter Dave Aitel introduced an open source fuzzer called SPIKE [8].

SPIKE allowed users to model network protocols with variable length data blocks,

making it easier to fuzz all levels of the protocol stack. SPIKE, and the block-based

approach to protocol modeling, became the foundation for the modern fuzzing tool

Sulley which is discussed later in this chapter.

22

In the early 2000s the technique was extended from UNIX application fuzzing and

network protocol fuzzing to other types of application fuzzing. Web browser fuzzing

gained attention in 2004 when Michal Zalewski released a tool called mangleme [22],

[28]. The tool generated randomly mutated HTML pages to expose vulnerabilities

in web browsers. In 2005, Michael Sutton and Adam Greene from iDEFENSE labs

presented a variety of file fuzzing tools at Black Hat USA in 2005 [21]. These tools

allowed users to automatically generate corrupt files that could expose vulnerabilities

in the applications that use them.

In the 2010s protocol fuzzing research has focused on developing tools that lever-

age as much information as possible to generate fuzz sets that cover as much of a

protocol as they can, or are simple to implement and require little human effort to

operate. Despite tools tailored for many different applications and industries, little

or no published fuzzing research is tailored to military data link systems. This is not

surprising given the sensitive nature of such systems. There are however a variety of

tools that, while they may not be directly useful, illustrate that types of innovative

fuzzing implementations that are feasible in similar systems. It is important to have

a good understanding of the state of the art in this regard so that testers can envision

the types of tools that may be designed and employed for military data link systems.

Three such innovative tools are described here:

� AutoFuzz is a type of mutative fuzzer called an in-line fuzzer. This type of fuzzer

sits between two communicating entities and mutates some messages flowing

between them in real time. In the case of AutoFuzz, the fuzzer sits between

a server and client. The tool learns the syntax of the protocol automatically

by observing valid messages pass between the server and client for a period of

time. At some point it begins to apply mutations to packets passing through

the system, fuzzing either the server or the client. An illustration of this system

23

is shown in Figure 2. This type of self-learning, plug and play fuzzing tool is

an intriguing concept that may also be implementable for military data link

systems. [12]

Figure 2. The set-up of the in-line fuzzer, AutoFuzz. This image was retrieved from
[12].

� T-Fuzz is a generative fuzzer designed for use in telecommunication networks.

The fuzzer is integrated into a conformance testing framework that is already

in use in the industry. This existing framework happens to include protocol

models; T-Fuzz leverages this fact by extracting these existing models and pro-

ducing fuzzed messages based on them. The fuzzer is also integrated with the

existing test delivery mechanism. A diagram of T-Fuzz and its interaction with

the conformance testing tool TTCN-3 is shown in Figure 3. The approach taken

by T-Fuzz shows how a fuzz testing tool can be integrated into an existing con-

formance testing tool. The approach also avoids the tedious task of protocol

modeling by extracting existing models from the testing framework. [16]

� Another fuzzing approach involves leveraging research into taint analysis to

direct fuzz testing towards the most vulnerable network data. Taint analysis is

a program analysis technique that tracks user input data throughout a program

and system; the idea being that this data is a likely source of unwanted inputs,

or taint. This fuzzing approach tracks tainted packets and data in a network

and fuzzes them. By targeting this type of data, the researchers hope to more

quickly identify vulnerabilities in a network. This type of targeted fuzzing

24

Figure 3. The set-up of the generative fuzzer, T-Fuzz. This image was retrieved from
[16].

can be envisioned in military data link systems. For example, if information

from untrustworthy external sources could be tracked and exclusively fuzzed,

high risk susceptibilities may be found more quickly than if fuzzing is applied

uniformly. [9]

2.1.2 In Practice.

While fuzzing frameworks specific to military data links do not appear in the

literature, general purpose frameworks offer an opportunity to use existing tools to

fuzz such links. A good overview of general purpose tools can be found in a report

on securing critical infrastructure commissioned by the European Union. The report,

[5], is focused in part on the protocol fuzzing of industrial control systems, often

embedded systems.

Industrial control systems face some of the same challenges as military data link

systems when it comes to fuzz testing. First of all, both are predominantly embedded

25

systems that a built for specific tasks. This means that they lack some of the general

purpose features of traditional computer networks. As a result, it is far more difficult

to apply traditional fuzzing tools and error monitoring applications to these systems.

Rather, system specific tools must be developed to fuzz test and observe the status

of these systems.

Secondly, these systems employ a large variety of complex, often proprietary,

protocols that are not found in conventional computer networks. Since these protocols

are less prevalent, existing fuzzing tools do not support them. These protocols have

less exposure in academia and to security researchers more broadly so vulnerability

testing is performed on them far less often.

In light of these challenges, the report highlights two fuzzing frameworks that are

widely used and may be adaptable to embedded system fuzzing. The preeminence

of these two frameworks is confirmed by their mention elsewhere in the literature,

including in the three aforementioned modern fuzzing applications, [9], [12], and [16],

and cyber-security researchers awareness of them in general. The two tools are Sulley,

[7], and Peach, [10].

2.1.2.1 Sulley.

Sulley is an open source, Python based, fuzzing framework that consists of many

components [7]. The framework provides tools to generate fuzzed messages, deliver

them, and monitor the network and receiving applications for adverse effects. To

generate fuzzed data, Sulley takes a block based approach like that of the original

open source fuzzer, SPIKE [8]. The user is able to model a protocol using simple or

complex field types that can then be individually mutated. The block based approach

also allows the user to model dependencies between fields like checksums.

Sulley natively supports delivering fuzzed messages via TCP, UDP and SSL. Other

26

delivery mechanisms are possible but require the user to program a python module.

State modeling of the network protocols is also supported allowing the fuzzer to handle

more complex protocol interactions. Sulley places a large emphasis on monitoring

capabilities. These tend to focus on packet capture and analysis as well as application

fault detection tools.

The block based method for protocol modeling may be adaptable to military

data link protocols. If such a method was implemented, Sulley could be used to

automatically generate test cases based on a model. However, Sulley may not be very

helpful from that point onward. Since many data link protocols do not use TCP or

UDP, travel over common data link layer standards like Ethernet or IEEE 802.11,

or are even packet based; the delivery mechanisms native to Sulley are not of much

use. Similarly, Sulley’s monitoring capabilities focus on traditional packet switched

computer networks and would not be useful in the embedded systems like military

data links. For these reasons, Sulley was not pursued as a fuzzing framework for this

thesis.

2.1.2.2 Peach.

Peach is a fuzzing framework that has been in development since 2004 [10]. An

open source community version exists as well as a commercial version. Peach takes a

different approach to protocol modeling than Sulley. Its approach involves the devel-

opment of an XML document called a Peach Pit. A Peach Pit contains information

about the protocol to be fuzzed including information about the data fields as well

as state information for more dynamic protocols.

Peach contains a larger set of built in delivery mechanisms than Sulley, and custom

mechanisms can be written if necessary. Peach also has some monitoring capabilities,

called agents, that can attach debuggers to a target process or monitor for error

27

messages or other signs that a target has been affected.

Like Sulley, the delivery and monitoring features of Peach are not particularly

applicable to military data link fuzzing, but modeling these protocols with Peach Pits

is feasible. The data model inside a Peach Pit is designed to be human readable and

is implemented in a flexible XML structure. For this reason, the Peach Pit was chosen

as a starting point for the protocol models developed in this thesis. More discussion

on this is found in Section 4.1.1. Unfortunately the fuzzing functions, called mutators,

that Peach applies to the data model to generate fuzz test sets are all designed with

traditional computer network protocols in mind. The Peach framework does allow

for the development of custom mutators; such a step would be necessary before using

Peach in a military data link fuzz test.

2.2 Adequacy Criterion

2.2.1 In Software Testing.

Software testing has been around as long as software has. As early as the 1970s,

researchers tried to identify the best methods for selecting test cases to test programs

for errors and bugs. The fundamental question arrived at by these efforts was “What

is the test criterion”, that is, what is measured to determine the adequacy of a test

[11]. In the 1990s a survey paper, [29], identified various test criterion that have been

proposed and how they can be used to demonstrate test adequacy. This paper further

uses the term coverage with regards to the idea of test adequacy. For example, if the

test adequacy criterion is to exercise every statement in a program, this criterion is

called the statement coverage criterion. A percentage can be used to describe how

many of the statements have been exercised in a test to indicate how adequately

testing has been performed.

28

2.2.2 In Fuzzing.

Software testing criterion tend to focus on white-box testing, that is using infor-

mation about the source code of the software under test to develop test cases and

measure coverage [19]. There are not many definitions of adequacy criterion for the

black box case. It seems in most cases when black box fuzzing methods are developed,

their adequacy criterion is not defined, and the measure of effectiveness of their meth-

ods is based on how many new vulnerabilities they were able to find as in [17], [15]

and [25], or the fact that they can generate any possible input even though generating

every input would be infeasible as in [16].

In a couple of cases, the adequacy criterion and coverage measures were defined

for black box fuzzing. First, [14] represents network protocol specifications as finite

state machines and has an adequacy criterion of all transitions fuzzed. It also defines

the adequacy criterion of all message types fuzzed, but claims this is inferior to the

transition criterion because it ignores the state machine nature of the protocol. This

criterion hinges on the system under test being easily and sufficiently modelled using a

finite state machine which may be difficult due to the black box nature of the system.

Second, [26] defines semi-valid input coverage (SVCov) for fuzz testing and claims

that it is the first coverage criterion for fuzz testing. The core idea behind SVCov

is that the protocol specification can be written as a finite set of constraints on the

input messages. Since effective fuzzing requires inputs that at least vaguely resemble

valid messages so that they do not get immediately dropped by the receiving system,

SVCov only measures how many test cases break one and only one of the constraints

on the input set. This is why the method is named semi-valid input coverage.

This approach has many strengths. First of all, the method is straight forward;

once a set of constraints is derived from a protocol specification, the coverage compu-

tation is simply the number of constraints broken by the test set divided by the total

29

number of constraints. Second, the method is generic enough to cover most types

of fuzzing including file fuzzing, software input fuzzing, as well as protocol fuzzing.

Finally, SVCov operates only a set of test cases; it is not tied to the method used to

generate them. This allows it to fit in the fuzzing framework described in Section 1.4.

The method takes two inputs: a protocol specification (used to derive the constraints)

and the set of test cases, and returns one output: the coverage value, a percentage

between 0% and 100%.

Despite these strengths, this coverage criterion has a few faults that may preclude

it from being considered a viable measure of test set effectiveness. First, the authors

acknowledge that the creation of a non-redundant set of constraints may be challeng-

ing for complex protocols. Since the method does not consider any test cases that

break two or more constraints, if two constraints are redundant so that neither can

be broken while the other is not, these constraints will never be covered. Data link

protocols are complex, and it is probably a non-trivial effort to derive non-redundant

constraints.

Second, the relation between the coverage value and the proportion of existing

vulnerabilities the test set should uncover is hard to discern. The tester would know

that a test set with an SVCov score of 90% can be expected to uncover more vulnera-

bilities than a test set with a score of 60%. But counter-intuitively, the test set scoring

90% by no means has tested 90% of the invalid inputs, nor is it expected to find 90%

of the vulnerabilities, nor has it a 90% chance of finding a vulnerability. The 90%

figure is instead based on an abstract representation of the protocol as constraints.

It may be hard to base further testing decisions on this figure.

Third, the authors also acknowledge that 100% coverage based on SVCov is in

no way a guarantee that all existing vulnerabilities existing in the protocol have

been exposed. Consider these two examples of invalid inputs that may trigger a

30

vulnerability, but would not be covered by the SVCov metric.

1. A protocol has a constraint that says a message may be no more than 3 words

long and another constraint that says a command word may not appear more

than twice in a message. A vulnerability is triggered when four or more com-

mand words appear in the same message. Any test case that would discover this

vulnerability would break both constraints and therefore provide no coverage

under SVCov.

2. A protocol has a “second” field in which the second of the current minute is

reported. A constraint that says the value in this field may not exceed 59.

Another field rates the confidence in the value being reported in the first field.

Unbeknown to the tester that derived the constraints, the SUT only processes

the “second” field if the confidence level in the other field is high enough. A

test case that breaks the constraint and sends a second value of 62, but includes

a low confidence value, is not processed by the SUT, but is marked as covering

the broken constraint. Thus, a test set may break every constraint, but leave a

vulnerability undiscovered.

As the authors suggest, SVCov is best when paired with other coverage criterion

to accurately assess the effectiveness of a fuzz test. Unfortunately very few such

criterion exist. In [26], the authors go on to suggest a number of non-fuzzing specific

criterion that may apply, but these tend to focus on white box testing methods that

require access to source code.

2.2.3 Fundamental Axioms.

Eight fundamental axioms of software testing adequacy are laid out by [27] and

can be used as a basis for building a coverage criterion. Axioms one, three and four

31

from this paper are applicable to fuzz testing (the other five are not) and [26] adds a

another axiom specific to fuzz testing. Together they are:

1. Applicability: There is at least one finite set of test cases that is adequate, that

is it provides 100% coverage.

2. Monotonicity: If a test set is enlarged its coverage may not decrease.

3. Inadequacy of the Empty Set: The empty test set provides zero coverage.

4. Fuzz-test coverage: A test set consisting of only valid inputs achieves zero cov-

erage

Any fuzzing coverage criterion must meet these fundamental axioms. This the-

sis presents a new approach that satisfies these fundamental axioms and provides

a coverage criterion designed to be an accurate reflection of the thoroughness of a

test set. Unlike the approach taken in [14], this approach does not use a finite state

model. Doing so would increase the robustness of the analysis, but would be diffi-

cult to achieve for the black-box case where state information is often unattainable.

This new approach does not require any constraints to be manually defined as in [26]

except a delineation between the valid and invalid inputs for each field.

32

III. Creating the Criterion

In this chapter a coverage criterion for fuzz testing called ExCov is presented.

This thesis defines coverage as the expected percent of existing vulnerabilities discov-

ered by a set of test cases. To develop the criterion, this definition is unpacked and

implemented. In this chapter, a procedure is created that takes as inputs a set of test

cases and a data model and returns a value between 0% and 100%. This value is the

best estimate of the expected percentage of existing vulnerabilities that test set would

discover when applied to a SUT using the protocol in question. The equations and

procedures presented in this chapter are implemented in a comprehensive example in

Appendix C.

The approach taken in this chapter treats a protocol as a set of fields. A vulner-

ability in the protocol is assumed to manifest in either one field, or a combination of

fields. For example, if a SUT has a vulnerability where a value of 0xFFFF in field 6

triggers an error state; that vulnerability would be said to reside in field 6. If an error

state is only entered if field 5 has a value of 0x42 AND field 6 has a value of 0xFFFF,

then the vulnerability is said to reside in the field combination of fields 5 and 6.

This difference between fields and field combinations will be covered extensively

later in the chapter, but it is important to understand how vulnerabilities are classified

so the approach taken to compute coverage is clear. The ExCov procedure starts

with the idea of field coverage. That is, the coverage of each individual field can

be calculated in isolation. By limiting the scope of the coverage calculation to a

single field, the necessary equations and procedures to compute coverage are easier to

derive and explain. This is done in Section 3.1. Once the procedures and equations

for computing the coverage of each field are presented, the coverage values must be

combined to arrive at the coverage for all fields. This is done in Section 3.2.1.

Vulnerabilities are not necessarily restricted to only one field however. As in the

33

previous example, some vulnerabilities may span multiple fields. These vulnerabilities

are called multi-order vulnerabilities. More specifically, an N th order vulnerability

spans N fields. To handle these vulnerabilities, a procedure was created to measure

coverage for field combinations. Notationally, a field combination of N fields is said

to be an N th order field combination. Coverage of multi-order field combinations is

presented in Section 3.2.2, with special cases handled in Section 3.2.3. The coverage

values for fields and field combinations must be combined to reach a total coverage

value for the test set. This is done in Section 3.2.4.

An underpinning mechanic of this coverage calculation method is the modeling of

vulnerabilities in general. An approach to this task is shown in Section 3.3. Finally,

Section 3.4 synthesizes the information from the rest of the chapter into a step by

step procedure for calculating coverage.

3.1 Field Coverage

This thesis defines field coverage as the expected percentage of existing vulnerabil-

ities in a field discovered by a set of test cases. This definition needs to be unpacked.

First, the meaning of the term discovers needs to be clarified. A test case is said

to discover some vulnerability V if it is the first test case in a test set to test a value

that triggers V . For example, consider a field where a vulnerability V is triggered if

a 5, 6, or 7 is tested. A test set of three test cases is applied. The first test case tests

a value of 4, the second test case tests a value of 7, and the third test case tests a

value of 6. Test case 1 does not discover V because it does not test 5, 6, or 7. Test

case 3 does not discover V because V was already discovered when the test case was

applied. Test case 2 does discover V since it was the first test case to test 5, 6, or 7.

A vulnerability is discovered by a set of test cases if it is discovered by any test case

in the set of test cases.

34

Second, the term expected refers to the concept of probabilistic expectation. This

implies that there is some sort of randomness or unknown parameter in the fuzz test

over which an expectation can be found. Consider the contrary case of an omniscient

coverage calculator, that is, a calculator that knows all test case inputs and all vul-

nerabilities in the protocol. In this case, the number of vulnerabilities a set of test

cases discovers can be found directly, and therefore field coverage definition no longer

requires the expected qualifier. The percentage of existing vulnerabilities in a field

discovered by a set of test cases can be directly computed.

In Section 3.1.1 a field is considered where the vulnerabilities are known, but

the test cases are randomly selected. In this case, field coverage can be accurately

calculated with a random model for test case selection. Derived from this example

are the equations necessary to calculate field coverage for any number of random test

cases in a field with known vulnerabilities.

Of course, if the vulnerabilities are known, fuzz testing is unnecessary. Further,

this set-up for a coverage calculator is not the one presented in the fuzzing framework

in Section 1.4. In that framework, the test cases are known to the calculator, but

the vulnerabilities in a field are not. To account for these unknown vulnerabilities, a

probabilistic model for vulnerabilities in general is created in Section 3.3.

To find the equations that measure field coverage under this framework, the equa-

tions that compute field coverage in Section 3.1.1 are modified to shift from expecta-

tion over random test cases to expectation over the random model for vulnerabilities.

This is done in Section 3.1.2. The equations arrived at in Section 3.1.2 are sometimes

not directly applicable to special types of fields or fields where the tester has some

information about possible vulnerabilities. Three of these cases that arose during the

course of this thesis are described and accounted for in Section 3.1.3.

35

3.1.1 Coverage With Known Vulnerabilities.

This section considers a made-up field where the vulnerabilities are known, but

the test cases are randomly selected. The primary purpose of this section is to derive

basic equations for field coverage, but it also serves as an introduction to many of

the terms created for this thesis and used throughout this chapter to describe the

abstract concepts behind crafting a fuzz testing criterion. A list of these terms and

their definitions can be found in Appendix A.

The field used in this section and its associated spaces are shown in Figure 4. The

field contains 5 bits, so there are 25 or 32 possible values this field can take. The

protocol standard for this field does not allow two ones to be adjacent to each other.

All values that satisfy the standard are considered elements in the field’s valid space.

If a value does not satisfy the standard, and is therefore not in the valid space, it is

in the invalid space

Notationally, any space associated with a field is a set with elements that are the

values the field can take on. In this field, the invalid space is set I where:

I = {00011, 00110, 00111, 01011, 01100, 01101, 01110, 01111, 10011, 10110,

10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}

Figure 4. An illustration of the spaces associated with a five bit field

36

Usually in this thesis field values will be represented in decimal, not binary. This way

I can be more clearly defined as:

I = {3, 6, 7, 11, 12, 13, 14, 15, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}

It is much more common in this chapter for the cardinality of I, denoted |I| to be

used than I alone. This simply means the number of elements in I. For this field

|I| = 19.

The invalid space of a field may contain zero, one or many vulnerabilities. In this

example, the vulnerabilities present in this field are known. Three vulnerabilities can

be triggered by values in this field:

Vulnerability 1: There are exactly three adjacent ones.

Vulnerability 2: All bits are ones.

Vulnerability 3: The last three bits are ones.

The set of values that trigger a specific vulnerability make up what is called the specific

vulnerability space of that vulnerability. For example, the specific vulnerability space

of vulnerability 1, call it V1 is:

V1 = {00111, 01110, 10111, 11100, 11101} = {7, 14, 23, 28, 29}

The cardinality of these spaces is also important. For this vulnerability, |V1| = 5.

The cardinality of a space will also be called the size of a space in this thesis. Note

that specific vulnerability spaces are not necessarily mutually exclusive. The value 7

is in both V1 and V3.

The vulnerability space is the set of all values that trigger a vulnerability. In

general, a vulnerability space is the union of all specific vulnerability spaces. For this

37

field, vulnerability space V , is:

V = V1 ∪ V2 ∪ V3 = {7, 14, 15, 23, 28, 29, 31}

In this section, field coverage for this field will be calculated for test sets with 1

to 19 randomly selected test cases. The values for the test cases will always be in

the invalid space of the field, with each invalid value having an equal probability of

selection. Since field coverage is defined as the expected percentage of vulnerabilities

discovered, probabilistic expectation will be incorporated into the calculation. This

will allow the randomness of the inputs to be handled theoretically and remove the

need for any simulation.

The calculation will begin by finding the coverage of only one random test case

in Section 3.1.1.1, then it will extend this to a test set of two random test cases in

Section 3.1.1.2. Finally the calculation will be extended to incorporate any number

of test cases in Section 3.1.1.3.

3.1.1.1 One Test Case.

Before starting the field coverage calculation some variables need be defined:

Ki: the number of vulnerabilities discovered by test case i

N : the number of vulnerabilities present in the field

P i
j : the probability that test case i discovers exactly j vulnerabilities

From these definitions, the expected number of vulnerabilities discovered by test

case 1 can be simply denoted as E[K1]. Using the definition of expected value, the

expected number of vulnerabilities discovered by test case 1 can be calculated as:

E[K1] =
N∑

n=0

nP 1
n (1)

38

By examining Figure 4, the number of vulnerabilities each value in the invalid

space will discover can be easily found. Since each value is equally likely to be tested,

the probability the first test case will discover 0, 1, and 2 vulnerabilities can be found.

This is all shown in Table 1.

Table 1. Possible outcomes from the first test case broken down by number of vulner-
abilities discovered

Number of vulnerabilities
discovered

0 1 2

Test cases that discover
them

11000,11001,00011,
01011,11011,10011,
11010,00110,11110,
10110,01101,01100

01110,01111,11101,
11100

00111,11111,10111

Probability of discovering
that many vulnerabilities

P 1
0 = 12/19 P 1

1 = 4/19 P 1
2 = 3/19

Applying (1) to the example, the expected number of vulnerabilities discovered

by one test case can be found.

E[K1] =
N∑

n=0

nP 1
n = 0 (12/19) + 1 (4/19) + 2 (3/19) + 3 (0) = 10/19 (2)

From the definition of field coverage, the coverage of the first test case, call this

C1, is the expected percentage of vulnerabilities found by the first test case. There-

fore by dividing the number of discovered vulnerabilities, K1 by the total number of

vulnerabilities, N , the field coverage for one test case is found.

C1 = E

[
K1

N

]
=
E[K1]

N
=

10/19

3
= 17.5% (3)

There is another way to calculate coverage that is less straightforward but is easier

to implement than the previous approach. It involves looking at which vulnerabil-

ities a test case will uncover instead of how many. First, consider the expression

Pr(Ti ⊆ Ṽj) where Ti is a set of one value, test case i, and Ṽj is undiscovered vul-

39

nerability j. This reads as the probability that the value of test case i is in the specific

vulnerability space of the so far undiscovered vulnerability j. Said more simply, the

probability test case i discovers Vj.

The probability the first test case discovers vulnerability j is simply:

Pr(T1 ⊆ Ṽj) =
|Vj|
|I|

(4)

Using (4) and Figure 4, the probability each vulnerability is discovered for the

field is:

Pr(T1 ⊆ Ṽ1) = 5/19 Pr(T1 ⊆ Ṽ2) = 1/19 Pr(T1 ⊆ Ṽ3) = 4/19 (5)

Notice that the sum of these probabilities is also the expected number of vulner-

abilities found:

N∑
n=1

Pr(T1 ⊆ Ṽn) = 5/19 + 1/19 + 4/19 = 10/19 = E [K1] (6)

The proof in Figure 5 shows that this new way to calculate the expected number

of vulnerabilities found in (6) is equivalent to the more straightforward way in (2).

That is:

E [Ki] =
N∑

n=0

nP i
n =

N∑
n=1

Pr(Ti ⊆ Ṽn) (7)

3.1.1.2 Two Test Cases.

The coverage of the field for two test cases is a bit trickier to compute. First it must

realized that Pr(T2 ⊆ Ṽj) depends on Pr(T1 ⊆ Ṽj) because if test case 1 discovers

a vulnerability, test case 2 can’t discover that vulnerability. Therefore Pr(T2 ⊆ Ṽj)

becomes:

40

Let I be the set of all distinct values in the invalid space, and let Ti be a set of
cardinality 1 where Ti ⊆ I and Ti represtents the value tested by test case i.
Let Ṽ1, Ṽ2, . . . , ṼN be subsets of I, the specific vulnerability spaces that have yet
to be discovered.
Let Ṽj = ∅ if Tk ⊆ Ṽj for any 1 < k < i, and any 1 < j < N . That is, if
vulnerability j has been discovered by a previous test case, Ṽj is the empty set
since Ṽj represents specific vulnerability spaces not yet discovered.
Let the cardinality of the intersection between Ti and Ṽj be denoted Xi,j:

Xi,j =
∣∣∣Ti ∩ Ṽj∣∣∣

That is, Xi,j = 1 if test case i discovers vulnerability j, and Xi,j = 0 otherwise.
From this definition it follows that:

Pr (Xi,j = 1) = Pr(Ti ⊆ Ṽj)

It also follows that the number of vulnerabilities discovered by test case i, Ki, can
be represented as:

Ki =
N∑

n=1

Xi,n

The expected number of vulnerabilities discovered by test case i is therefore:

E [Ki] = E

[
N∑

n=1

Xi,n

]

By the linearity of the expectation operator:

E

[
N∑

n=1

Xi,n

]
=

N∑
n=1

E [Xi,n]

By the definition of expected value:

E [Xi,n] =
1∑

m=0

m · Pr (Xi,n = m) = 1 · Pr (Xi,n = 1) = Pr(Ti ⊆ Ṽn)

Therefore:

E [Ki] =
N∑

n=1

Pr(Ti ⊆ Ṽn)

Figure 5. Proof for the alternate definition of expected number of vulnerabilities found

41

Pr(T2 ⊆ Ṽj) = Pr (Discovering Vj ∩ Vj not discovered yet) (8)

= Pr (Discovering Vj | Vj not discovered yet)Pr (Vj not discovered yet)

Pr (Discovering Vj | Vj not discovered yet) is the probability test case 2 discov-

ers Vj, when test case 1 did not. This is simply the size of the vulnerability, |Vj|

divided by one less than the size of the invalid space, |I|, since there are one less

values to choose from for the second test case. Pr (Vj not discovered yet) is simply

1− Pr (Vj discovered already) = 1− Pr(T1 ⊆ Ṽj)

So in general for test case 2:

Pr(T2 ⊆ Ṽj) =
|Vj|
|I| − 1

(
1− Pr(T1 ⊆ Ṽj)

)
(9)

For the example:

Pr(T2 ⊆ Ṽ1) =
5

18

(
1− 5

19

)
= 0.20 (10)

Pr(T2 ⊆ Ṽ2) =
1

18

(
1− 1

19

)
= 0.05 (11)

Pr(T2 ⊆ Ṽ3) =
4

18

(
1− 4

19

)
= 0.18 (12)

Using (7):

E [K2] =
N∑

n=1

Pr(T2 ⊆ Ṽn) = 0.20 + 0.05 + 0.18 = 0.43 (13)

Coverage of a field with two test cases is the expected number of vulnerabilities

discovered by either test case divided by the total number of vulnerabilities, therefore:

42

C2 =
E [K1] + E [K2]

N
= 32.0% (14)

3.1.1.3 M Test Cases.

Using the same logic as above, these equations can be extended to any number of

test cases:

Pr(Ti ⊆ Ṽj) =


|Vj |
|I| , i = 1

|Vj |
|I|−i+1

(
1−

∑i−1
k=1 Pr(Tk ⊆ Ṽj)

)
, i > 1

(15)

Cm =
1

N

m∑
i=1

E [Ki] =
1

N

m∑
i=1

N∑
n=1

Pr(Ti ⊆ Ṽn) (16)

Figure 6 shows the application of (15) and (16) to the field. The figure plots the

coverage of C1, C2, . . . , C|I|, or test sets of size 1, 2, . . ., 19. As expected, coverage only

increases as more test cases are added. Since later test cases have a higher chance of

having values in the specific vulnerability spaces of already discovered vulnerabilities,

they have less of a chance of discovering new vulnerabilities. This means that they

provide less marginal coverage. This can be seen in the figure as each successive test

set size produces smaller increases in coverage.

3.1.2 Estimating Coverage.

The field coverage equations (15) and (16) are of little direct use. Testers will not

have access to the underlying vulnerability space; if they did fuzz testing would be

unnecessary. Testers will not have any way of finding |Vj| or N , so (15) and (16) can

not be computed.

However by making some observations and assumptions about the nature of vul-

nerability spaces and, by extension, the values of |Vj| and N an estimate of coverage

43

Figure 6. Coverage of the five bit example field

can be found. Research into real vulnerabilities in protocols can reveal information

about the general nature of vulnerability spaces and help focus these assumptions,

but this information is difficult to quickly aggregate. Working with the information

available, a best guess can be made for the underlying distribution of vulnerabilities,

and a coverage value can be computed from these estimates.

Looking at (15) and (16) it can be seen that the size of each vulnerability, |Vj|, and

the number of vulnerabilities, N , are the two variables that contain information about

the vulnerability space. Therefore, these are the two variables that a probabilistic

estimate of vulnerabilities must account for.

Further analysis reveals that coverage, Cm, depends on the distribution of vulner-

ability sizes alone and not the number of vulnerabilities, in other words, Cm depends

44

on |Vj| but not directly on N . For example, fields where 50% of the vulnerabilities

are of size S1 and 50% of the vulnerabilities are of size S2 both tested with m test

cases, will always have the same coverage regardless of N .

This is shown in the following equations. First consider that, based on (15),

Pr(Ti ⊆ Ṽj) depends on the size of the vulnerability, |Vj|, but nothing else about Vj.

Therefore:

If |Va| = |Vb|, then Pr(Ti ⊆ Ṽa) = Pr(Ti ⊆ Ṽb) (17)

Next, let half of the vulnerabilities be of size S1, call them Vodd, so that |Vodd| = S1.

Let the rest be of size S2, call them Veven, so that |Veven| = S2.. Then (16) can be

simplified to remove its dependence on N .

Cm =
1

N

m∑
i=1

(∑
j is odd

Pr(Ti ⊆ Ṽj) +
∑

j is even

Pr(Ti ⊆ Ṽj)

)
(18)

Cm =
1

N

m∑
i=1

(
N

2
Pr(Ti ⊆ Ṽ1) +

N

2
Pr(Ti ⊆ Ṽ2)

)
(19)

Cm =
m∑
i=1

(
1

2
Pr(Ti ⊆ Ṽ1) +

1

2
Pr(Ti ⊆ Ṽ2)

)
(20)

Coverage therefore depends on the distribution of vulnerability sizes and not char-

acteristics of the individual vulnerabilities or the number of total vulnerabilities. A

probabilistic model of these vulnerability sizes can be built that allows coverage to

be calculated based on what is known about vulnerabilities in general instead of the

specific vulnerabilities of the field in question.

That model can come in the form of a Probability Mass Function (PMF) which

describes the probability a vulnerability has a certain size. Formally, let X be a

random variable that maps specific vulnerability spaces to their cardinality, |Vj|. Due

45

to the definition of specific vulnerability spaces, X must take on a value between 1 and

|I|. The distribution of this PMF is determined by the nature of all vulnerabilities

as well as any specific information the tester has about the fields in question.

Using this PMF the approach taken to find equations (15) and (16) can be re-

assessed. Instead of random test cases with known vulnerabilities, lets assume that

each vulnerability size, |Vj| is a random draw from the distribution described by the

PMF. Then the probability test case i discovers vulnerability j becomes:

Pr(Ti ⊆ Ṽj) =

|I|∑
x=1

Pr(Ti ⊆ Ṽj AND x = |Vj|) (21)

=

|I|∑
x=1

Pr(|Vj| = x)Pr(Ti ⊆ Ṽj | x = |Vj|) (22)

=

|I|∑
x=1

fX(x)Pr(Ti ⊆ Ṽj | x = |Vj|) (23)

Pr(Ti ⊆ Ṽj | x = |Vj|) is simply (15) with x replacing every |Vj|. It can be

rewritten as a new function R (x, i) that is a substitution into (15). This function is

shown in (24).

R (x, i) =


x
|I| i = 1

x
|I|−i+1

(
1−

∑i−1
k=1 R (x, k)

)
i > 1

(24)

Using this function in (23):

Pr(Ti ⊆ Ṽj) =

|I|∑
x=1

fX(x)R (x, i) (25)

Once this is substituted into (16), there is no longer any dependence on the index

of the vulnerability (j in (15) and n in (16)). This makes sense because the vulnera-

bilities are modeled using the PMF instead of finding coverage for N specific known

46

vulnerabilities. This allows for the following simplification:

Cm =
1

N

m∑
i=1

N∑
n=1

|I|∑
x=1

fX(x)R (x, i) (26)

Cm =
1

N

m∑
i=1

N

|I|∑
x=1

fX(x)R (x, i) (27)

Cm =
m∑
i=1

|I|∑
x=1

fX(x)R (x, i) (28)

With the dependence on N removed, there is no longer any dependence on un-

knowable values. This allows the field coverage calculation shown in (29) to be applied

to any field that does not require special modifications discussed later in this chapter.

Cm =
m∑
i=1

|I|∑
x=1

fX(x)R (x, i) (29)

Figure 7. Coverage of a field with |I| = 100 for all possible test set sizes using the
vulnerability model described by (30)

47

As an example to illustrate how to compute field coverage using a model for

vulnerability sizes, consider a field which has an invalid space with |I| = 100. Nothing

about the vulnerabilities present in this specific field are known, but a model for

vulnerabilities in general says, simply, 25% of vulnerabilities have a size of 1, 25%

have a size of 5, and 50% cover the entire invalid space. This model for vulnerability

sizes would look like:

fX(x) = 0.25δ(x− 1) + 0.25δ(x− 5) + 0.5δ(x− |I|) (30)

where δ(x) is the discrete unit impulse function. When applied to the estimated

coverage equations, (24) and (29), the curve in Figure 7 is produced.

A much better model for vulnerability sizes is described in Section 3.3. Using

that model, and equations (24) and (29), field coverage for a set of test cases can be

calculated for fields that are not considered special cases.

3.1.3 Special Cases.

3.1.3.1 Structure Fields.

Fields that contain information about how a message is structured or interpreted

are defined as structure fields in this thesis. Sometimes these fields have valid and

invalid spaces that can not be simply defined based on valid and invalid values. For

example, consider the 3 bit “Number of Words” field in the restaurant locator protocol

described in Table 12 on page 151. This field is a structure field because it is related

to the number of blocks of fields (called words for this protocol) to follow. A value

greater than five in this field is always invalid because there are only five words that

are allowed to follow the first word. A value of say, two, is only valid if two words

follow the first word. So if in one message the field has a value of two, but three

48

words follow, the field is invalid. But the next message could have the same value of

two, with two words following and therefore be valid.

Clearly the field coverage calculation for basic fields, (24) and (29), cannot be

applied if values are valid or invalid depending on more than just the value itself. For

these fields, valid and invalid spaces will be computed differently. With an accurate

definition of these spaces, the same approach used previously to compute the coverage

of a basic field can be applied to a structure field as well.

For this thesis only one type of structure field, a repeating relation field, required

a special invalid space definition. Other structure fields can be defined using the data

model described in Chapter IV that would require a unique definition of their invalid

space, but due to time restraints and a lack of a direct need, these definitions were not

developed. Some examples of such a structure field types would be the total length

and checksum fields of the IPv4 protocol.

A repeating relation field is a field whose value dictates the number of times a

block of fields repeats. The “Number of Words” field in the Restaurant Locator

Protocol is an example of such a field. This type of field is defined in a data model

by using the “Relation” element with three attributes:

1. type: the type of relation; for a repeating relation field this is “count”, a

reference to the count of the number of times the linked block repeats. This

attribute comes from the Peach language.

2. of: the block that is repeating, also from the peach language [10].

3. adjustment: the difference between the number of times the related block

repeats and the value in the field. This attribute was added to handle cases

where this value is not zero.

The block that repeats has two attributes that are also necessary for determining

49

the repeating relation field’s valid and invalid spaces. They are the “minOccur” and

“maxOccur” attributes, and describe the number of possible times a block can repeat.

It is important to note that this is not the mininum and maximum number of times

it is allowed to repeat per the standard, but the minimum and maximum times it

can repeat given testing, hardware and SUT parsing limitations. For example, the

Restaurant Locator protocol has a minOccurs of 1 and a maxOccurs of 8 for its

Outer Repeating Block. Any more than 6 repeats would be invalid, but it is known

or suspected that the SUT may accept as many words as any value in the “Number of

Words” field would allow. Perhaps the standard was written to allow for more words

to be added later as needed, and the SUT will try to process up to 8 words.

With knowledge of the relation’s set-up, the valid and invalid spaces can be cre-

ated. For repeating relation fields, a test case where the field has a value of two, and

the related block repeats 3 times, is distinctly different from the test case where the

field has a value of two and the related block repeats 4 times. Thus these two cases

are separate elements in the field’s valid or invalid space. Another possibility is that,

due to a choice somewhere in the data model, the related field is missing from the

test case. This type of occurrence is definitely invalid, and it is considered a unique

element of the invalid space for every possible number of times the related block can

repeat. Figure 8 shows the adjusted valid and invalid spaces for the repeating relation

field, Number of Words in the Restaurant Locator Protocol.

3.1.3.2 Numeric Fields.

Another unique type of field that is worth re-evaluating is a numeric field. In this

type of field, values have a numerical meaning defined by the protocol standard. For

example, consider a field in a protocol that represents the number of years since 2000

when the message is being sent. The field is 8 bits long so theoretically any year from

50

1 2 3 4 5 6 7 8

Missing

000 Valid Space

001

010 Invalid Space

011

100 |I| = 66

101

110

111

Actual Number of Repeats

V
al

u
e

o
f

Fi
el

d

Figure 8. The spaces associated with the Number of Words field from the Restaurant
Locator Protocol

2000 to 2255 can be represented. The system is designed to last until 2075, so a value

in this field above 75 is unexpected and therefore invalid. It could be imagined that

the system might combine this information with a day and a month from some other

fields and compute a day of the week. If the program that does this calculation uses

a lookup table and that table only goes to the year 2100, any number over 100 may

cause an issue in this system. A vulnerability that exploits this issue would have a

specific vulnerability space of all values between 101 and 255.

In fields like this, test cases can no longer be considered equally likely to discover

a vulnerability. In this example, some test cases that are larger, and further from the

valid space are more likely to discover a vulnerability. This violates the assumption

previously made that two different invalid inputs are equally likely to trigger a vul-

nerability. If it is known that a field is numeric, then some test cases are more likely

to discover vulnerabilities than others.

More extreme values are not necessarily more likely to uncover vulnerabilities

however. Consider the system previously described, and suppose the program com-

puting day of the week was well written to ignore any input with a year beyond 2100.

51

However, this program sends the full date, with the year and day of the week to

another program that acts on it. If this second program is designed to only expect

years equal to or less than 2075, and it receives a date with the year 2090, it may

react poorly, revealing a vulnerability. In this case a vulnerability exists with a space

containing all values between 76 and 100.

These two examples shows another property of numeric spaces; vulnerabilities

are far more likely to lie in ranges of numbers rather than random numbers as the

previously discussed standard approach assumes. Under that approach, test cases of

189, 190 and 191 would provide the same coverage as test cases 80, 180, and 255. In

a numeric field, the latter set of test cases should provide more coverage since more

sections of the range are tested.

To properly account for numeric spaces in the coverage calculation, a new method

was developed that calculates the coverage of a numeric field. Some assumptions were

made to make analysis of this kind of space feasible. First, numeric field vulnerabilities

are assumed to have specific vulnerability spaces that are contiguous in the invalid

space. That is if the values 4 and 6 trigger a vulnerability, then a value of 5 will

also trigger that vulnerability. If a vulnerability does not meet this criteria, if it

is made up of a few disjoint sequences of values for example, it can be treated as

multiple contiguous vulnerabilities. Second, the invalid space itself is assumed to be

numerically contiguous. For example, if the value of 3 is invalid and the value of 8

is invalid, then the values 4, 5, 6, and 7 must all also be invalid. A space that does

not meet this criterion is said to be disjoint . Disjoint numeric field invalid spaces

can be handled by computing coverage for each disjoint section as if each were the

only invalid space in the field, and then averaging the coverage values to reach a field

coverage value for the field as a whole.

The estimated coverage curve equation derivation is very different for numeric

52

fields than for the non-numeric fields assumed in the derivation of (24) and (29). In

the non-numeric case, the value of an arbitrary test case did not affect the coverage

calculation, all values had the same probability of discovering a vulnerability. In

numeric spaces, a value near a value already tested has a lower probability of dis-

covering a vulnerability than a test case removed from the previously tested values.

For this reason, the numeric coverage equation’s derivation has to start with a new

mathematical representation of a vulnerability.

Since numeric vulnerability spaces are contiguous in invalid space, they can be

defined by two values:

v: the lowest value that triggers the vulnerability

l: the length of the vulnerability (note that l = |V |).

The probability that a vulnerability exists with specific parameters v and l can there-

fore be defined by a two dimensional random variable, X. This random variable maps

numeric field specific vulnerability spaces to their defining values v and l. The PMF

of X, denoted fX(v, l), is a function that gives the probability a vulnerability has

characteristics v and l and can be best defined using research into real vulnerabilities.

A good approximation of this function is derived in Section 3.3.

A useful function G can be defined which returns a 1 if the value of a test case, ti

falls in the specific vulnerability space of a vulnerability defined by v and l:

G (v, l, ti) =

 1 v ≤ ti ≤ v + l

0 otherwise
(31)

With this function and the PMF defined, the probability of the first test case

discovering any arbitrary vulnerability, Vj, can be found by summing across the PMF

for the range that includes the test case.

53

Pr(T1 ⊆ Ṽj) =
∑
v,l

G (v, l, ti) fX (v, l) (32)

Note the subtle difference between ti and Ti. ti is the value of test case i, while

Ti is a set with only one value, ti. It would be correct to say Ti = {ti} or even that

T1 ⊆ Ṽj is equivalent to t1 ∈ Ṽj.

When a test case is not first, it will only discover the vulnerability if that vulner-

ability has not been discovered by a previous test case. To account for this a new

function, H, is defined that is 1 when test case i is not in the space of a vulnerability

defined by v and l, and 0 when it is in the vulnerabilities range.

H (v, l, ti) = 1−G (v, l, ti) (33)

If no prior test case has tested the space described by v and l, then the product of

this H function for all previous test cases will be 1. If any one of the prior test cases

did test this space, the product will be zero. This allows it to be incorporated with

the G function and fX to find the probability test case i, where i > 1, will discover

vulnerability Vj:

Pr(Ti ⊆ Ṽj) =
∑
v,l

(
G (v, l, ti)

(
i−1∏
k=1

H(v, l, tk)

)
fX (v, l)

)
(34)

Using (16) for coverage based on the probability each test case will discover a

vulnerability, coverage for a field with m test cases t1, t2, . . . , tm is:

Cm =
1

N

m∑
i=1

N∑
n=1

Pr(Ti ⊆ Ṽn) (35)

Notice that the right side of (34) does not depend on j. This is because no matter

the specific vulnerability’s number, it is still model by the same random variable X.

54

Therefore Pr(Ti ⊆ Ṽn) can become some function Q(i) that depends on i but not j.

That is:

Q(i) =
∑
v,l

(
G (v, l, ti)

(
i−1∏
k=1

H(v, l, tk)

)
fX (v, l)

)
(36)

Using Q(i) in (35) allows for a simplification:

Cm =
1

N

m∑
i=1

N∑
n=1

Q(i) =
m∑
i=1

Q(i)

(
1

N

N∑
n=1

1

)
=

m∑
i=1

Q(i) (37)

Then the right side of (36) can be substituted into (37) to arrive at a complete

expression for the coverage, Cm. The limits on the sums are added here for complete-

ness. The only inputs needed to compute the coverage curve are the invalid space I,

and the input test cases ti, i = 1, . . . ,M where M is the number of test cases.

Cm =
m∑
i=1

max(I)∑
v=min(I)

|I|−v+min(I)∑
l=1

(
G (v, l, ti)

(
i−1∏
k=1

H(v, l, tk)

)
fX (v, l)

)
(38)

Equation (38) is computationally expensive as written due to the number of sums

and products, but it can be replaced by a simple algorithm that arrives at the same

result. To make this possible a two-dimensional boolean array is created. The el-

ements in this array represent if the corresponding v, l pair has been tested. The

domain of this array is the same as the domain of fX , that is all valid values of v and

l. This array will be denoted possibility tested(v, l). The algorithm is as follows:

For every test case i

For all possible v

For all possible l

if ti ∈ [v, v + l] and possibility tested(v, l) = false

then possibility tested(v, l) = true

end for

55

end for

if last test case, i = m

then return
∑

v,l possibility tested(v, l)fX(v, l)

end for

3.1.3.3 Values Likely to Discover a Vulnerability.

In some cases it may be simple to identify specific values or ranges of values

in the invalid space of a field that appear more likely than the others to trigger a

vulnerability. Consider if a vulnerability has been discovered in some previous test of

the same protocol on a different system. The values that trigger this vulnerability in

that test, will likely also trigger a vulnerability in this new test. The tester can input

information about which values in a field are more likely to discover a vulnerability,

and an estimate of how much more likely. This way, the coverage calculation can

accurately reflect the information known by the tester.

To illustrate how this type of information can be incorporated into the coverage

calculation, consider a field with an invalid space of I = {6, 7, 8, 9, 10} so that |I| = 5.

The tester has a test set that tests each of these values sequentially so that t1 = 6,

t2 = 7, etc. The tester also suspects that a value of 8 is K times more likely to

discover a vulnerability than otherwise thought. The tester wants to know what the

coverage of the test set is after the applying each test case.

Without the suspicion of value 8, the coverage each test case provides can be found

using (29). This equation provides the cumulative coverage for each test case, but

the specific coverage each test case adds to the total can also be found by dropping

the leading summation. This value can be denoted ci where i is the test case index.

ci =

|I|∑
x=1

fX(x)R (x, i) (39)

56

Using the PMF from Section 3.3, specifically equation (80), the individual coverage

contribution of each of the five test cases can be computed. This result is shown in

Figure 9. Like any complete set of coverage values, these five coverage values sum to

one because when every value in the invalid space has been tested, the space is 100%

covered.

0%

10%

20%

30%

40%

50%

60%

70%

80%

6 7 8 9 10

Sp
ec

if
ic

 C
o

ve
ra

ge
 C

o
n

tr
ib

u
ti

o
n

Test Case Value

Figure 9. The specific coverage, ci, provided by each sequential test case for the example
field without value weighting

To incorporate the additional information about the value of 8 in test case 3, the

coverage of this test case, ci, needs to be increased relative to the other test cases.

The sum of all coverage values must remain at 1 however, so in order to add coverage

to test case 3, coverage provided by the rest of the test cases must be reduced. Since

the relationships between these test cases ought to be maintained, all of them must

57

be reduced by some factor r, where 0 < r < 1. These new reduced coverage values

will be called c′i with the definition c′i = r · ci.

The coverage for test case 3, c3, undergoes the same reduction, but then the

additional information that this test case should provide K times the coverage than

it otherwise would can be applied so that c′3 = K · r · c3. As stated before, the

individual coverage values must sum to 1; this property allows r to be computed in

terms of the original coverage values as shown:

5∑
i=1

c′i = 1 (40)(
5∑

i=1

r · ci

)
+ (K − 1) · r · c3 = 1 (41)

r

((
5∑

i=1

ci

)
+ (K − 1) · c3

)
= 1 (42)

r (1 + (K − 1) · c3) = 1 (43)

r =
1

1 + (K − 1) · c3

(44)

This approach can be applied in general so that many values can provide more

coverage based on tester knowledge. To do this, every test case ti can have some

weight Ki. If the tester has no information about a value, a test case that takes

on this value receives a weight of 1. The reduction factor r can be calculated by

assuming some test set of |I| test cases that contains each value in the invalid space

once. Then, by the same method used in the previous example, an expression for

r can be found that depends on the value weights, Ki, and the coverage each value

provides without weighting, ci.

58

|I|∑
i=1

c′i = 1 (45)

|I|∑
i=1

Ki · r · ci = 1 (46)

r =
1∑|I|

i=1Ki · ci
(47)

The new coverage values, c′i can be found simply as:

c′i = r ·Ki · ci (48)

Noting again the expression for ci shown in (39), a complete expression for c′i can

be found:

c′i = r ·Ki

|I|∑
x=1

fX(x)R (x, i) (49)

And applying this to the original field coverage equation, (29), a complete expres-

sion for standard coverage with weighting can be found:

Cm =
m∑
i=1

r ·Ki

|I|∑
x=1

fX(x)R (x, i) (50)

Returning to the example, the additional information about the test case of 8 can

be incorporated to reach a better specific coverage value contributed by each test

case. Using the equations just derived with a K3 = 5, r for this field is found to be

0.76. This leads to new, scaled specific coverage contributions of each case shown in

Figure 10 contrasted with the original specific coverage values shown in Figure 9.

For numeric fields, the same weighting approach can apply by noting that a dif-

ferent expression for ci can be extracted from (38):

59

0%

10%

20%

30%

40%

50%

60%

70%

80%

6 7 8 9 10

Sp
ec

if
ic

 C
o

ve
ra

ge
 C

o
n

tr
ib

u
ti

o
n

Test Case Value

No Value Weighting Value of 8 weighted with K = 5

Figure 10. The specific coverage, ci, provided by each sequential test case for the
example field with and without value weighting

ci =

max(I)∑
v=min(I)

|I|−v+min(I)∑
l=1

(
G (v, l, ti)

(
i−1∏
k=1

H(v, l, tk)

)
fX (v, l)

)
(51)

This leads to the weighted numeric field coverage equation:

Cm =
m∑
i=1

r ·Ki

max(I)∑
v=min(I)

|I|−v+min(I)∑
l=1

(
G (v, l, ti)

(
i−1∏
k=1

H(v, l, tk)

)
fX (v, l)

)
(52)

Shortcomings of this Method. This method was implemented in ExFuzz

for any number of weighted inputs per field. During the implementation it was dis-

covered that the method presented was somewhat incomplete, requiring ExFuzz to

60

add some additional procedures to the method. It was also found that a contradiction

arises with other assumptions about the coverage metric when this method is applied.

First, the calculation of r in (44) requires knowledge of all Ki and ci with i =

{1, 2, . . . , |I|}. Rarely in a coverage calculation is every one of these values computed.

In fact, the only time they are is when the test set contains a test case for every

value in the invalid space (in this case m = |I|). When this happens, field coverage

is always 100% regardless of any value weighting.

To calculate the missing ci and their associated Ki, ExFuzz completes the com-

putation of specific coverage values for all i. To do this it has to select the order in

which the remaining, untested, invalid values are incorporated into the calculation. It

selects the values with the highest weights first, with ties going to the lower decimal

value. This approach was selected because, of any approach, it assigned the smallest

coverage to any test set that did not include weighted values.

This addition to the method highlighted the second flaw. Since the sequence of the

test cases could be manipulated to provide more coverage, coverage was dependent

on the arrangement of the test cases in a test set. This meant that two identical

test sets could provided different amounts of coverage if test cases were arranged in a

different order. Nothing in this thesis’s definition of coverage implies that this should

be possible. The number of vulnerabilities a test set discovers should be independent

of the arrangement of the test cases in the stateless SUT model assumed.

Possible Solutions for Future Work. While there was not enough time to

implement a solution to these problems, use of the value weighting feature of ExFuzz

was avoided for all of the results in Chapter V. The tool would certainly be stronger

with this feature, so some time was spent thinking about how to address these issues.

Two possible solutions have come to mind.

61

� Redefine Ki and ci so that their index, i, is not a representation of the test case

number, but of its placement based on weight. Consider the example field used

in this section, under the current method K3 = 5 while all other K’s are 1.

Instead, order the test cases and their accompanying K weights by weight so

that K1 = 5, t3 becomes t1 and the other test cases are assigned t2 to t5 in order

of their decimal value. This removes the dependence on test case order and

increases coverage for test cases that include weighted values over the current

method.

This approach doubles down on the solution implemented by ExFuzz to address

the incompleteness of the current method. It will be computationally expensive,

but addresses the contradiction with this thesis’s definition of coverage.

� Address weighted values earlier in the coverage calculation. Under the current

method, weighted values result in scaling the specific coverage contributions of

each test case, leaving the internals of the coverage calculation alone. Weighted

values could be incorporated earlier however. There is no obvious way to do

this, but one potential approach could involve expanding the notional invalid

space used in the calculation.

For example, the invalid value of 8 in the example can be treated as five different

invalid values. This would increase |I| from five to nine. When the value of 8

is tested, it would count as testing five values simultaneously. This approach

would bypass the modifications that led to the contradiction with the coverage

definition, and also move away from the current flawed method. However,

this method would distort the application of the PMF which is not based on

artificially enlarged invalid spaces.

62

3.2 Test Set Coverage

This section discusses how to apply the field coverage metric derived in Section 3.1

to many test cases for many different fields to compute the coverage of a test set. First

the method to arrive at test set coverage for first order vulnerabilities will be discussed

in Section 3.2.1. Then method to define coverage for multi-order vulnerabilities will

be presented in Section 3.2.2, accompanied by a discussion on handling multi-order

structure field combinations in Section 3.2.3. This section concludes by showing how

to combine the coverage values of different orders into a single coverage value for the

fuzz test in Section 3.2.4.

3.2.1 First Order Coverage.

The coverage criterion presented in this chapter assumes that a protocol can be

represented as a finite set of fields. A method for modeling a protocol in such a

fashion has been developed and is based on the Peach Fuzzing Platform [10]. This

model, called a data model, is discussed in Chapter IV. According to the data model,

not every field must be present in a test case, but every bit in a test case must belong

to some field. A test case, one single message sent to the SUT, can be represented

by a data model as a series of fields with values. As shown in Chapter IV, a single

message may contain a field that is repeated multiple times, or it may not contain

certain fields at all. The rules of which fields can appear when and how many times

they may appear are all contained in the data model.

As an example, consider a protocol with three fields, A, B and C, each three bits

long. Field A is always first, and dictates how many fields will follow in the message.

Field B is optional and may be repeated up to 6 times. The value of 111, or decimal

7, is not allowed in field B. Field C is always the last field and is required to be 111,

or 7. Since at least field C is required, field A may not be 000.

63

Consider the test case 000111010011. Field A contains the invalid value of 000,

while the actual number of fields following it is 3. Field B occurs twice, the first time

it is the invalid value of 111, but the second time it is the valid value 010. Field C

occurs once at the end and is invalid since it is not the required value of 111. It is

tempting to assume that this test case provides coverage for all three fields because it

tests values in each of the field’s invalid spaces. This assumption would be a mistake

however. If the SUT were to immediately drop any message with 000 in the first

field, the effects of placing 011 in field C would not be known. Likewise, if the SUT

immediately drops messages without the terminating 111 string, the effect of placing

000 in field A would not be known. Without knowledge of the SUT’s behavior,

this test case provides no first order coverage. It would however provide third order

coverage as will be discussed later.

This example gets at a fundamental idea about fuzzing. Inputs must be valid

enough to be processed by the SUT, but invalid enough to trigger a vulnerability.

These inputs are termed semi-valid inputs and are discussed in depth in [26]. Because

of this observation, in order for a test case to provide coverage for a first order

vulnerability, all included fields but one must have a value in their fields valid space.

In addition to this requirement, a test case will not provide any first order coverage if

it contains a series of fields whose values, when taken together, are considered invalid.

These combinationally invalid fields are called Invalid in Combination field sets, or

IIC sets, and are discussed with examples later in this chapter. For now, it is enough

to know that if one exists in a test case, the test case cannot provide first order

coverage.

A test case could also consist of only valid values. By axiom four of fuzz testing,

presented in Section 2.2.3, this test case cannot increase the coverage of the test set.

Therefore, only the test cases where one and only one field is invalid provides first

64

order coverage.

Another important consideration is that any field with no invalid space cannot be

assigned a field coverage value per the method presented in Section 3.1. Without an

invalid space, a vulnerability space cannot exist, so these fields are not included in

the test set coverage calculation.

These limitations on which test cases and fields may provide first order coverage

can be summarized by the following two limitations:

� First Order Test Case Limitation: A test case may provide first order

coverage if and only if it contains exactly one field with an invalid value and

contains no Invalid in Combination (IIC) sets.

� First Order Field Limitation: A field is assigned a coverage value and

incorporated into the final first order coverage metric, C1, if and only if the

cardinality of its invalid space is non-zero, |I| 6= 0.

Considering only the test cases and fields that meet these limitations, the coverage

a test set provides can be computed. This can be done by following these steps:

1. Identify the field with an invalid value for every test case in the test set

2. Sort the test cases into groups based on which field is invalid

3. For each group, calculate field coverage using the appropriate field coverage

equation; see Table 2

4. Combine field coverage values to find first-order coverage

The first two steps are self explanatory. For step 3, the appropriate field coverage

equation must be selected from Section 3.1 based on any special information known

about the field. Table 2 shows which field coverage equation to used based on the

characteristics of the field.

65

Table 2. Field coverage equation lookup table

Is the field numeric? Does the field contain weighted values? Then use eq. on page
no no (29) 47
yes no (38) 55
no yes (50) 59
yes yes (52) 60

To implement step four, an approach had to be found that combined field coverage

values in some way to produce a coverage value for the entire test set. To determine

the appropriate way to do this, the definition of test set coverage was analyzed. Per

the definition, the final metric needed to be a measure of the expected percentage of

first order vulnerabilities found by test cases in the test set. This metric, C1, was

derived as follows:

Let F be the number of fields in a protocol where the size of the invalid space,

|I| 6= 0.

Let Ci, i = 1, 2, . . . , F be the coverage of ith field where |I| 6= 0.

Let Ni be the number of vulnerabilities present in field i, and:

NTotal =
F∑
i=1

Ni (53)

Let Li be the number of vulnerabilities in field i discovered by the test set. Then

by the definition of field coverage shown in (3):

Ci =
E [Li]

Ni

(54)

The expected total number of vulnerabilities found, VFound, can then be shown to

be:

E [VFound] =
F∑
i=1

E [Li] =
F∑
i=1

CiNi (55)

66

Therefore, test set first order coverage C1, the expected percentage of all first

order vulnerabilities can be found as:

C1 =
E [VFound]

NTotal

=
1

NTotal

F∑
i=1

CiNi (56)

This definition of test set coverage depends on knowing exactly how many vulner-

abilities exist and what fields they are in. If this was known, the fuzz test would be

unnecessary, so the dependence on Ni must be removed. Equation (56) shows that

the proper calculation of first order test set coverage is an average of field coverage

values weighted by the number of vulnerabilities present in each field. To remove this

dependence, Ni can be replaced by the expected number of vulnerabilities present,

E [Ni]:

C1 =
1∑F

i=1E [Ni]

F∑
i=1

CiE [Ni] =
1

E [NTotal]

F∑
i=1

CiE [Ni] (57)

This value depends instead on what is known about the field: at least the size of

its invalid space, and potentially any more information the tester manually enters into

a fuzzer about the field. E [Ni] can be estimated by considering all of the information

available about a field and by analyzing the distribution of vulnerabilities in tested

protocols.

In the simplest case, the fuzzer has no information about the nature of any field

that would cause E [Ni] to be different for any two values of i. In this case E [Ni] =

E [N1] for all i so:

C1 =
1∑F

i=1E [N1]

F∑
i=1

CiE [N1] =
E [N1]

F · E [N1]

F∑
i=1

Ci =
1

F

F∑
i=1

Ci (58)

Which is simply the average of the field coverage values. If more information is

provided to the fuzzer about the nature of a specific field that increases the likelihood

67

of a vulnerability being present, a weighted average can be used. For example, if

a tester believes field six is four times as likely to have a vulnerability because she

has knowledge of how other similar systems have handled this field, she can assign

E [N6] = 4. Then by default, E [Ni] = 1 for all i 6= 6. In this case the weighted defi-

nition for first order test set coverage in (57) is used instead of the simple unweighted

one in (58).

3.2.2 Nth Order Coverage.

3.2.2.1 Types of Multi-Order Vulnerabilities.

Vulnerabilities are not always confined to a single field. For example, consider two

fields, A and B, each 5 bits. Field A is an indicator of the priority of the information

contained in field B. The values 0 to 20 are valid, with 0 being the lowest priority and

20 being the highest. Values above 20 are invalid. Field B is the field from Figure 4,

with the same vulnerable inputs. In this example however, the application receiving

the message with these two fields is only interested in the value of B if its priority is

19 or 20. Therefore, the vulnerabilities laid out in Section 3.1.1 for field B are not

discovered unless the value of A is 19 or 20. Since the presence of this vulnerability

is dependent on two fields, it is said to be a second order vulnerability.

A second order vulnerability, or, more generally, a multi-order vulnerability, exists

in the invalid space of a field combination, instead of the invalid space of a field. These

spaces can be depicted in a similar manner to the first order spaces, but in these spaces

each element represents a unique combination of values, rather than a single unique

value. The spaces associated with this example are shown in Figure 11.

In this depiction of a second order space, each value, or square, actually represents

a set of two values: the value of field A and the value of field B. Any value set where

at least one value is invalid is in the invalid space of this field combination. The

68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 x x x x x x x x x x x x x x x x x x x

20 x x x x x x x x x x x x x x x x x x x

21

22

23

24

25

26

27

28

29

30

31

Valid Space

Invalid space

x Vulnerability Space

Field B Value

Fi
el

d
 A

 V
al

u
e

Figure 11. A representation of the second order spaces associated with two five bit
fields

vulnerability described is comprised of value pairs where field A is always valid (either

19 or 20) and field B is always invalid.

There is also the possibility a vulnerability lies in the space where field A is

greater than 20 and field B is invalid so that both fields are invalid. If a vulnerability

is triggered only if both fields have a value of 31 then it would lie in this part of the

invalid space.

Another important case to consider is two values for two different fields that are

valid on their own, but become invalid when combined. As a simple example, consider

two fields where the first, a four bit field, represents the month of the year and the

69

second, a five bit field, represents the day of the month. Obviously month values

of 0, 13, 14 and 15 are invalid, and the day value of 0 is invalid in the single field

case. When combined however, February 30th and 31st are invalid, even though each

value is valid for its field. This combination is shown in Figure 12. The tester will

generally have to enter these types of invalid combinations manually in the protocol

data model. These pairs of fields and values will be called invalid in combination

(IIC) pairs and make up another type of multi-order vulnerability.

Figure 12. A representation of the second order spaces associated with day and month
fields

The possible types of second order vulnerabilities are summarized as:

� One field invalid, one field valid. Ex: When field A is 19 or 20 and field

B is any invalid value a vulnerability is triggered.

� Two invalid fields. Ex: When field A is 31 and field B is any invalid value

a vulnerability is triggered.

� Two valid fields that are IIC. Ex: A month field denoting February and a

day field with a value of 30 or 31 trigger a vulnerability.

70

It is important to note that a vulnerability may combine types. Consider if the

same vulnerability shown in figure 11 was also triggered when field A had a value of

21. Then some triggering inputs would have one valid and one invalid input while

others would have 2 invalid inputs.

Multi-order vulnerabilities may exist as any of the types presented here or as

combinations and extensions of them. Perhaps a vulnerability is triggered only when

field A is 19 or 20, field B is invalid and the reported month and date are IIC. Since

this vulnerability depends on the values of four different field, it is a fourth order

vulnerability.

3.2.2.2 Computing Multi-Order Coverage.

To compute second order test set coverage C2, the same formulas used for C1 can

be applied with some modification. For first order coverage, coverage values for each

field were found and then combined to reach a test set coverage value. Instead of using

fields, second and higher order coverage is found by looking at field combinations. For

example, consider a protocol with three fields, A, B, and C, each with a non-empty

invalid space. The coverage of fields A, B and C would be combined using (57) or (58)

to find C1. The coverage of field combinations AB, AC, and BC would be combined

in a similar manner to find C2. Third order coverage, C3, would be the same as the

coverage of field combination ABC.

The process to determine the Rth order coverage of a test set, CR, is very similar

to the process to find C1. As in that process, there are limitations on the test cases

and fields, in this case field combinations, which are considered. For the case of order

R:

� Rth Order Test Case Limitation: A test case may provide Rth order coverage

if and only if there exist some combination of R fields which has an invalid value

71

set and contains all the invalid fields and Invalid in Combination (IIC) field sets

present in the test case.

� Rth Order Field Combination Limitation: A field combination is assigned

a coverage value and incorporated into the final Rth order coverage metric, CR,

if and only if the cardinality of its invalid space is non-zero, |I| 6= 0.

Considering only the test cases and field combinations that meet these limitations,

the Rth order coverage a test set provides can be computed. This is done by following

a similar set of steps to that used for first order coverage.

1. For each test case in the test set identify the field or fields with invalid values

and all IIC values sets

2. For each combination of R fields, collect all test cases where every invalid field

and IIC value set are entirely contained in fields in that combination

3. For each group, calculate field combination coverage

4. Combine field combination coverage values to find Rth order coverage

The first two steps simply involve arranging the test cases to identify which test

cases provide coverage to which field combinations. It should be noted that, unlike

for first order field coverage, test cases can contribute to the coverage of multiple field

combinations. If within a test case field A is the only invalid field and it appears

with a valid field B and a valid field C, then both field combinations AB and AC are

invalid in this test case and receive some coverage. Table 3 summarizes the first and

second order coverage a test case can provide based on the number of invalid fields

and IIC value pairs it has.

72

Table 3. Possible coverage contributions for test cases with different arrangements of
invalid fields and IIC pairs.

If a test case has:
Then it provides:

First order coverage Second order coverage
One invalid field For one field For many pairs of fields
Two invalid fields For one pair of fields
No invalid fields
and no IIC pairs
No invalid fields

For one pair of fields
and one IIC pair
No invalid fields
and 2+ IIC pairs

The third step is achieved by treating the field combination and its associated

spaces like a first order field and finding coverage using (29). The numeric cover-

age equations are not directly applicable since multi-order spaces are not linear as is

required for numeric spaces, but in the future, field combination coverage for combi-

nations of numeric fields may be developed. The PMF applied in the field coverage

equation can be modified to reflect the fact that a multi-order field’s coverage is be-

ing computed. The proper PMF to use would have to be determined by studying

multi-order vulnerabilities. For this thesis the PMF that was already derived for first

order spaces was simply applied to multi-order spaces as well.

The fourth step is also similar to the first order steps on page 65, but the derivation

of the equation used to combine field combination coverage values is a bit trickier.

This is because the number of fields with an invalid space, F , now needs to become

the number of field combinations with an invalid space, a slightly more challenging

figure to find.

The number of field combinations with non-empty invalid spaces, call this M , can

be computed using F , the total number of fields in the protocol, FI , the total number

of fields with invalid spaces in the protocol, and FCIICR
the number of order R field

combinations that contain IIC values, but have empty first order invalid spaces for all

73

fields in the combination. Notice that the number of field combinations with at least

one field with an invalid space is the same as the total number of field combinations

minus the valid only combinations. Adding in the IIC containing field combinations,

M can be computed as:

M =

(
F

R

)
−
(
F − FI

R

)
+ FCIICR

(59)

Upon implementation of this equation, it was found that it counted one case that

should not have been. In some more complex protocols, certain fields may never

validly appear in the same message. The field combinations of these sets of fields

can never exist with all other fields being valid, so their field combination should not

be included in the number of total combinations. Let the total number of such field

combinations for an order R be QR. Then (59) becomes:

M =

(
F

R

)
−
(
F − FI

R

)
+ FCIICR

−QR (60)

To help notate the equations related to multi-order coverage, a function G is

defined. G maps every possible combination of R fields — i1, i2, . . . , iR — to a unique

integer p. So G(i1, i2, . . . , iR) = p. An inverse function H is also defined that maps

the integer p back to a set of R fields, H(p) = {i1, i2, . . . , iR}. Using this H function

and assuming no weighting of any field combination, Rth order coverage can be found

as the average of all Rth order field combination coverage values:

CR =
1

M

M∑
p=1

CH(p) (61)

Note here that CH(p) or equivalently C{i1,i2,...,iR} is a field combination coverage

computed in step three above. Similarly for weighted field combinations with NH(p)

representing the number of vulnerabilities present in the field combination defined by

74

H(p) = {i1, i2, . . . , iR} for some fields i1, i2, . . . , iR:

CR =
1

E [NTotal]

M∑
p=1

CH(p)E
[
NH(p)

]
, where NTotal =

M∑
p=1

NH(p) (62)

3.2.3 Structure Fields.

As they did in Section 3.1, structure fields require special attention with regard

to multi-order spaces. The two, yet unmentioned, types of structure fields used in

this thesis are very similar and relate to the choice element presented in Chapter

IV. When combined with the repeating relation field described in Section 3.1, they

require special definitions of their valid and invalid field combination spaces.

3.2.3.1 Choice Relations.

The first type of structure field is called a choice relation. This type of field is

a custom peach pit extension and uses the relation element that is also used by the

repeating relation structure field. The value in a choice relation dictates the choice

that some choice element in the data model will make. For example, consider three

fields, A, B and C. Field B represents a distance in feet; field C represents a distance

in meters. Field A is a single bit; if it is a 0, distance should be represented in feet

and if it is a 1, distance should be represented in meters. The data model describing

this example would have fields B and C within a choice and field A outside of this

choice with a relation to the choice.

It is tempting to assume that “distance” should be represented by only one field

whether it is interpreted as feet or meters, negating the need for a choice at all.

However, a field that represents distance in feet may have a different invalid space

than one that represents it in meters, so only by treating them as separate fields

can coverage be accurately computed. In this example, the coverage of the choice

75

relation field, field A, can computed in the same way as non-structure fields. It

requires mentioning here however because it behaves differently when it is part of a

field combination with a repeating relation field.

3.2.3.2 Token Fields.

The second type of structure field is called a token field. This field resides inside a

choice, and has a fixed value that indicates the selected choice. Each possible choice

contains its own token field with a unique fixed value. For example, consider an eight

bit block of code that can be defined in two different ways; either field A - 2 bits,

field B - 4 bits and field C - 2 bits, or field D - 2 bits, field E - 6 bits. In order for the

SUT to determine which interpretation of these 8 bits to apply, it looks at the first

two bits. If they are 01, then the fields A, B, C interpretation is used, if they are 10,

then the fields D, E interpretation is used.

In this example fields A and D are token fields. Notice that only 01 is valid for

field A and only 10 is valid for field D. Further, field A can never take a value of

10, because if it did it would be interpreted as field D by the SUT. Likewise, field D

cannot take on the value 01, or it would be interpreted as field A. If those two bits had

a value of 00 or 11, it would be impossible to claim that the field was either field A or

D. However, all bits must belong to a field for this coverage criterion, so for purposes

of the coverage calculation, one token is assigned the title of the leading token. Any

value that does not match a token is considered an invalid instance of the leading

token, and the fields that follow (B and C in this example) are ignored for purposes

of calculating coverage. This leading token definition causes each non-leading token

to have an empty invalid space, excluding it from the coverage calculation. Thus, all

first order coverage of a token field is done through the leading token, and can be

found in the same way as any non-structure field coverage is found since the invalid

76

space is structured in the same way.

Data models that use token fields can often represent the same protocol by using

choice relations instead. The only time when it may be easier to use token fields is

when the token field is not the first field in the choice, but this is rarely the case.

Token fields are included in this thesis because, unlike choice relations, they are a

part of the peach pit language, and were the only type of structure field that can be

associated with a choice before support was added for choice relations in the modified

peach pit [10].

3.2.3.3 Combining Structure Fields.

A unique situation arises in a data model when a choice element is inside a repeat-

ing block. The result is the choice gets made multiple times and there are multiple

instances of token or choice relation fields. In these cases, a protocol often defines

rules about which choices can be made when in the sequence of repeats. These rules

can be captured by the Rule Set extension to the peach pit language which is dis-

cussed in Chapter IV. The Restaurant Locator Protocol (RLP), which is described

in Section B.3, provides an example of this.

The RLP states that Word 1 must be the first word, and Words 2 and 3 must exist

in a pair. The meeting or breaking of these rules is determined by a combination of

the value of the token field choosing the word and its place in the repeating sequence.

These limitations can therefore be thought of as affecting the field combination of the

repeating relation field and the token (or choice relation) field. A sequence of choices

that violates these rules would not contain any invalid values, and it should therefore

be treated as an IIC field set.

To visualize the valid and invalid spaces of a field combination between a repeating

relation field and a choice relation or token field, a simple case can be looked at.

77

Consider a repeating relation field only 2 bits long which relates to a block that

repeats 1 to 4 times. The adjustment of this relation is +1 so that a value of 0 in the

field means the block repeats 1 time. There are only two possible choices, A and B,

represented by a 1 bit token in each choice. A rule set is defined that says all choice

A’s must come before B’s. The valid and invalid spaces for this field combination

are shown in Figure 13. The size of the invalid space in this case would be 106

combinations of values.

Using this unique representation of an invalid space when a field combination is

of the repeating choice type, and using the previously described method for all other

field combinations, multi-order coverage can be computed for a test set. Once all the

desired multi-order coverage calculations are performed, it is time to combine these

coverage values into a final coverage metric for the entire fuzz test.

3.2.4 Combining Coverage Orders.

Given a test set and a protocol, the coverage of the test set for each order, 1

through the number of fields, F, can be found. A single coverage value for the entire

Figure 13. The valid and invalid space associated with a repeating choice field combi-
nation

78

test set has not been found yet however. To get this, the coverage values for all

vulnerability orders must be combined. To do this, either the number of vulnerabilities

present of each order (NR) needs to be known, or this figure needs to be estimated

using the expected number of vulnerabilities of each order. This leads to the following

definition of coverage for a test set:

CFuzz Set =
1

E [NTotal]

F∑
r=1

CrE [Nr] , where NTotal =
F∑

r=1

Nr (63)

This definition of coverage is of little practical use however because the higher

order space sizes are huge compared to the first and second order sizes. This leads

to infeasibly large test sets being needed to provide much coverage of these higher

order field combinations. To mitigate this issue, higher order vulnerabilities can be

assumed to be very rare or not of interest since they are so hard to find by either a

tester or an attacker. Therefore, the weight of higher orders, or the expected number

of higher order vulnerabilities can be assigned a value of 0, simplifying the coverage

calculation considerably.

The expected number of lower order vulnerabilities present in a protocol imple-

mentation can be found by studying real protocols and figuring out the ratio between

the number of first, second and third order vulnerabilities. Without any of this

research into these ratios, this thesis proposes using one of two fuzz set coverage

calculations. The first assumes all vulnerabilities of order four and higher are either

non-existent or not important to the fuzz tester. This coverage calculation also as-

sumes that 40% of all vulnerabilities are first order, 40% are second order and 20%

are third order. This reflects the fact that many fields in common protocols have

a dependence on one other field (latitude and longitude, priority and value, validity

and value) and fewer have a dependence on two other fields (hour, minute, second).

This simplified coverage equation is therefore:

79

C1
Fuzz Set =

2

5
C1 +

2

5
C2 +

1

5
C3 (64)

The second simplified coverage equation is for fuzz testing where testing for third

and higher order vulnerabilities is infeasible due to the number of fields, the size of

the fields, or the speed at which the test cases can be applied. Since testing for these

vulnerabilities is infeasible, the coverage calculation assumes that such vulnerabilities

do not exist. This may be a logically poor assumption, but if the tester with the

automated fuzzer cant find these higher order vulnerabilities, the attacker likely faces

equal difficulty in finding them. This equation assumes that first and second order

vulnerabilities are equally likely to exist in the protocol.

C2
Fuzz Set =

C1 + C2

2
(65)

3.3 Approximating Vulnerability Distributions

Section 3.1, estimating field coverage, introduces a probability mass function,

fX(x), which models the nature of vulnerability spaces. This function is used to find

field coverage in (29), (38), (50), and (52). For basic, non-numeric, fields, the PMF

maps vulnerability sizes to the probability any given vulnerability is exactly that size.

For example, fX(5) = 0.25 is equivalent to saying that 25% of specific vulnerability

spaces have a cardinality of 5. For numeric fields, a 2-dimensional PMF is used in

a similar manner. To reach an accurate coverage value, these functions, what they

represent, and how they are calculated needs to be understood. This section describes

the development PMFs which were then implemented in the coverage calculator.

The true nature of these PMFs is essentially unknowable. To find it testers would

need to discover every vulnerability in every protocol, an accomplishment that would

make fuzz testing obsolete. An educated guess can be made instead however. The

80

closer this guess is to the real nature of the function, the more accurate the coverage

calculation will be.

3.3.1 Open Source Protocol Analysis.

The best method of estimating this PMF would be to do a comprehensive study of

vulnerability discovery in protocol implementations and to identify the nature of those

found vulnerabilities. Unfortunately this would have been a massive undertaking and

the time-line for this thesis project would not allow for it. Instead, four open source

protocols were looked at, the invalid spaces of many of their fields were identified, and

groups of inputs which seemed most likely to cause an issue for a poorly implemented

receiver were recorded. The protocols were:

� Global Positioning System — Standard Positioning service (GPS-SPS)

� Bluetooth Network Encapsulation Protocol (BNEP)

� Open Smart Grid Protocol (OSGP)

� Ethernet POWERLINK

For each protocol, fields were selected for inclusion in the PMF estimation effort

based on these criteria:

� The protocol specification clearly indicates some values are not valid. This

allows the field to have an invalid space and potentially vulnerabilities.

� The meaning of the values of the field are clear and understandable so that

reasonable inferences may be made about potential vulnerabilities.

� The field is distinct from other, already documented fields. Often fields are re-

peated in different contexts throughout a protocol. To avoid over-representation

of some fields, these duplicates were avoided.

81

Descriptions and metrics collected from fields in these protocols are listed in Ap-

pendix D. Each field was classified as either standard or numeric and the size of

the invalid space of the field was recorded. For each field one or more potential vul-

nerabilities were identified and described along with the size of their vulnerability

space.

3.3.2 Standard Field Vulnerability Distribution.

For basic, non-numeric fields, the distribution of vulnerability sizes is essential to

the coverage calculation, (29). To estimate this distribution, the vulnerabilities in

standard fields in the collected sample were each placed into one of six categories

based on their size. A large portion of vulnerabilities covered the entire invalid space,

or just one value in the invalid space. Because of this, these two cases were each given

their own categories. The remaining vulnerabilities were categorized based on their

size relative to the invalid space, |V |/|I|. These remaining four categories were:

� 0% < |V |/|I| ≤ 25%

� 25% < |V |/|I| ≤ 50%

� 50% < |V |/|I| ≤ 75%

� 75% < |V |/|I| < 100%

This distribution is shown in Figure 14.

Vulnerabilities that occur when any invalid input is applied, that is, vulnerabilities

where |V | = |I|, were a common occurrence in the protocol analysis. It tended not to

matter if the field had many or few invalid values; sometimes it just seemed like any

invalid value might cause an issue. In a similar manner, many times one specific value

appeared problematic. These two vulnerability sizes were unique in their increased

rate of occurrence and independence from the size of the field’s invalid space.

82

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Single Input
(|V| = 1)

0% < 25% 25% - 50% 50% - 75% 75% - 100% 100%
(|V| = |I|)

Fr
ac

ti
o

n
 o

f
V

u
ln

e
ra

b
ili

ti
e

s

Size of |V| Relative to |I|

Figure 14. The estimated distribution of vulnerability sizes among non-numeric fields.
Data was collected from four open source protocols and is listed in Appendix D.

For these reasons, the model for vulnerability sizes in general assumes that vul-

nerabilities of size |V | = 1 and size |V | = |I| occur at a fixed rate, independent of

the value of |I|. For the model, these occurrence rates were set at the same levels as

observed in the open source protocols. That is single input vulnerabilities, |V | = 1,

comprise 18.518% of all vulnerabilities and all input vulnerabilities, |V | = |I|, com-

prise 38.889% of all vulnerabilities. This leaves 42.593% of vulnerabilities that have

a different size.

To model the distribution of vulnerabilities with sizes between 1 and |I|, the four

range categories of vulnerability sizes from figure 14 were considered. These appear

to suggest that small vulnerabilities, those between 0% and 25% of the invalid space,

83

make up the largest portion, while larger vulnerabilities, those between 75% and 100%

of the invalid space, make up the second largest portion. This observation suggests

that the trend of vulnerability size to rate of occurrence is not linear. Rather, a

second order polynomial fit was found to apply quite well to these data points. This

fit is shown in figure 15.

The distribution of vulnerability sizes can be modeled as a smooth function with

the exception of special cases |V | = 1 and |V | = |I| by applying this fit. This

function can then be sampled and scaled to form a valid PMF for any value of |I|.

As an example for how this can be done, consider a field with an invalid space of size

5. The probability a vulnerability in this space has a size of less than one, or greater

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0% 20% 40% 60% 80% 100%

Fr
ac

ti
o

n
 o

f
V

u
ln

er
ab

ili
ti

es

Size of |V| relative to |I|

Figure 15. A second degree polynomial least squares fit to the vulnerability size ranges
from Figure 14, excluding a size of one and a size of |I|

84

than five is clearly zero.

fX(x) = 0 when x < 1 (66)

fX(x) = 0 when x > 5 (67)

The probability a vulnerability is of size 1 or size 5 is fixed per the previous

discussion.

fX(1) = 0.18518 (68)

fX(5) = 0.38889 (69)

The probability a vulnerability is an intermediate size is determined by a sampled

and scaled version of the polynomial fit to the reference data. The unscaled equation

for the fit is:

funscaled(|V |) = 0.75926

(
|V |
|I|

)2

− 0.90370

(
|V |
|I|

)
+ 0.30920 (70)

Applying this to the remaining vulnerability sizes, |V | = 2, 3, and 4, unscaled

rates of occurrence for these sizes are found:

funscaled(2) = 0.0692 (71)

funscaled(3) = 0.0403 (72)

funscaled(4) = 0.0722 (73)

To form a valid PMF, all values must sum to 1. With the lowest and highest

values set, the intermediate values must sum to 0.42593. The scale factor K to make

85

the middle values sum to this figure can be found using this equation:

K =
0.42593∑|I|−1

x=2 funscaled(x)
(74)

For this example the scale factor works out to be K = 2.344. Applying this factor

to each unscaled rate of occurrence, the proper PMF value is found. For this example

the resulting PMF is:

fX(1) = 0.18518 (75)

fX(2) = 0.16224 (76)

fX(3) = 0.09451 (77)

fX(4) = 0.16918 (78)

fX(5) = 0.38889 (79)

In general this procedure can be applied to compute the proper PMF when |I| > 2

using this formula:

fX(x) =



0.18518 x = 1

K

(
0.75926

(
x
|I|

)2

− 0.90370
(

x
|I|

)
+ 0.30920

)
1 < x < |I|

0.38889 x = |I|

0 otherwise

(80)

The PMF in the special case where |I| = 1 is trivially:

fX(x) =

 1 x = 1

0 otherwise
(81)

86

And in the case of |I| = 2, |V | = 1 and |V | = |I| consume the entire PMF. Since

their set values do not sum to 1, they are scaled so that they do sum to 1 while

maintaining the same relative proportions.

fX(x) =


0.32258 x = 1

0.67742 x = 2

0 otherwise

(82)

3.3.3 Numeric Field Vulnerability Distribution.

Data was also collected on numeric fields. Of the fields selected from the four open

source protocols, 28% of them were numeric. This meant there was less information

to work with than for the standard fields, but the same general method was applied

to this data. The major difference between building the PMF for a numeric field

and a standard field is that the numeric field PMF is 2 dimensional. As described

in Section 3.1, the numeric PMF has a dimension representing length (analogous to

size in standard fields) and a dimension representing position in the invalid space. To

build an adequate PMF for numeric fields, the length and position of vulnerabilities

in the data set were documented and a PMF was built based on those findings.

The distribution of vulnerability lengths were categorized in the same way as

vulnerability sizes were in the standard case. The numeric field distribution of vul-

nerability lengths is shown in Figure 16.

The distribution of vulnerability position was a bit more difficult to quantify. This

was mainly because of a lack of vulnerabilities that did not either start on the lowest

value in the invalid space or end on the highest value. It was clear from looking at the

vulnerability positions that vulnerabilities tend to either start at the bottom of the

range, or end at the top with few residing completely in the middle. This lack of data

on middle range vulnerabilities prevented the identification of trends like, for example,

87

0

0.1

0.2

0.3

0.4

0.5

0.6

Single Input
(|V| = 1)

0% < 25% 25% - 50% 50% - 75% 75% - 100% 100%
(|V| = |I|)

Fr
ac

ti
o

n
 o

f
V

u
ln

e
ra

b
ili

ti
e

s

Length of Vulnerability Relative to |I|

Figure 16. The estimated distribution of vulnerability lengths among numeric fields.
Data was collected from four open source protocols and is listed in Appendix D.

“vulnerabilities are more concentrated higher in the range than lower”. This led to

the lumping all these middle position vulnerabilities into one category along with

a category for vulnerabilities that contain the lowest value and vulnerabilities that

contain the highest value. Vulnerabilities that cover 100% of the invalid space must

include both the lowest and highest values, so these are included in both categories.

The vulnerability position distribution is shown in Figure 17.

As was done with the interior categories for vulnerability size in a standard field,

a fit was applied to the range categories for numeric field vulnerability length. There

appeared no reason to use a polynomial fit again based on the available data, so a

linear least squares trend-line was calculated and applied to the four range categories.

88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lower Middle Upper

Fr
ac

ti
o

n
 o

f
V

u
ln

e
ra

b
ili

ti
e

s

Vulnerability Location

Figure 17. The estimated distribution of vulnerability positions in numeric fields.
Lower indicates the vulnerability includes the lowest value in the invalid space, higher
indicates the vulnerability includes the greatest value, and middle indicates the vul-
nerability contains neither extreme value. Data was collected from four open source
protocols and is listed in Appendix D.

This fit is shown in Figure 18, and the equation for this line is shown in (83); l is

the length of the vulnerability, which is analogous to |V | in standard fields and is

introduced in Section 3.1.

funscaled(l) = 0.14286

(
l

|I|

)
+ 0.01786 (83)

Incorporating the proportions of vulnerabilities with l = 1 and l = |I| based on

the collected data, a complete, unscaled function, fU1(l) can be arrived at for the

distribution of numeric vulnerability lengths:

89

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0% 20% 40% 60% 80% 100%

Fr
ac

ti
o

n
 o

f
V

u
ln

er
ab

ili
ti

e
s

Length of Vulnerability Relative to |I|

Figure 18. A linear least squares fit to the estimated distribution of vulnerability length
ranges in a numeric field from Figure 16, excluding a length of one and a length of |I|

fU1(l) =



0.07143 l = 1

0.14286
(

l
|I|

)
+ 0.01786 1 < l < |I|

0.57143 l = |I|

0 otherwise

(84)

To incorporate position into this function, a modifier, based on the rate of lower,

middle, and upper, vulnerability occurrences, is applied. From the data that is shown

in Figure 17, the modifier is set as shown in (85). The conditions in the function

identify four unique situations. First, if the vulnerability consumes the entire space,

then l = |I| and an average of the lower and upper positions is used. Second is a

90

vulnerability that starts at the lowest value, third is a vulnerability that does not

contain the lowest or highest value, and fourth is a vulnerability that contains the

highest value.

M(v, l) =



0.75000 l = |I|

0.71428 v = 1 and l 6= |I|

0.14286 v > 1 and l <= |I| − v

0.78571 l = |I| − v + 1 and l 6= |I|

(85)

The modifier can then be applied to the length distribution function to reach a

two dimensional unscaled distribution function, fU2(v, l) covering both length and

position:

fU2(v, l) = M(v, l)fU1(l) (86)

To properly scale the function to make it a PMF, the scale factor must be found

by finding the inverse of the sum across all values of v and l.

K =
1∑|I|

v=1

∑|I|−v+1
l=1 fU2(v, l)

(87)

The final, valid, PMF for the distribution of vulnerabilities among numeric fields

is shown in (88). This PMF is used in the coverage calculator’s implementation of

(38) and (51).

fX(v, l) = KfU2(v, l) (88)

3.3.4 Other Special Field Types.

Ideally, for the most accurate coverage calculation possible, these PMFs would

account for everything a tester knows about the nature of vulnerabilities. One addi-

91

tional way these PMFs can be improved is by developing seperate functions for special

field types that the tester may have some insight into, or that may have an obviously

different distribution of vulnerabilities than the two previously described. Due to

time constraints and a limited number of fields analyzed from open source protocols,

these special PMFs were not pursued for this thesis. Developing these special PMFs

may improve the quality of the coverage calculator, so it should be considered for

future work.

Some specific field types that likely have real vulnerability distributions that differ

from the standard ones estimated earlier in this section include:

� Repeating Relation Fields — These fields indicate how many blocks, fields,

bits or bytes follow in a message. Section 3.1.3.1 describes how the invalid space

of this field is treated as two dimensional since there are two elements that

determine this fields validity: its value, and the actual number of blocks, fields,

bits or bytes that follow. The general estimated distribution of vulnerability

sizes probably underestimates the size of these vulnerabilities since it is unlikely

that a single combination of value and repeats would trigger a vulnerability. For

example, a case where the field says 2 bytes should follow and 7 actually follow

is unlikely to trigger a vulnerability if a value of 2 with 8 bytes actually following

does not trigger one.

� Choice Tokens and Relations — These fields indicate how other bits in a

message should be interpreted. An invalid value in this field often mean that

the receiver will not be able to interpret some bits. Again the general estimated

distribution of vulnerability sizes probably underestimates the typical size of

these vulnerabilities. If a vulnerability is triggered because a receiver cannot

process some bits, it would be expected that any invalid value in this field would

trigger this vulnerability.

92

� Second and Higher order Field Combinations — In this thesis, the gen-

eral PMF is applied to field combination coverage calculations as well as field

coverage calculations. Certainly the distribution of vulnerability sizes in field

combinations is vastly different than with fields. The field combination invalid

spaces tend to be orders of magnitude larger than the invalid field spaces. Vul-

nerabilities in these spaces probably rarely cover the entire space. They are

likely confined to regions where one field is invalid, and a vulnerability is trig-

gered based on a valid value in a second field, or they may be confined to

regions where both fields are invalid. For this reason, the general PMF would

be expected to overestimate the vulnerability sizes in this case. It also should

be pointed out that the coverage calculator developed in this thesis does not

handle numeric fields in a field combination any differently than basic fields. If

the time were taken to model these higher order fields with thier own PMFs,

combinations that are part or all numeric can be treated properly.

3.4 Coverage Calculation Procedure

The previous sections in this chapter developed the equations and methods nec-

essary to compute ExCov. This section takes these equations and methods and turns

them into a procedure to reach a final coverage value CFuzzSet. The procedure assumes

that the tester has a set of test cases and a model for the protocol being fuzzed.

Set-up

1. Decide which final coverage approximation value, CFuzzSet, is to be computed.

Section 3.2.4 discusses three different approaches and lists their requisite equa-

tions: (63), (64), and (65).

2. Based on the selection in step one, find the order coverage values, C1,C2, . . . ,CRMax

93

that need to be calculated. For example, if C1
FuzzSet (shown in (64) on page 80),

is chosen, C1,C2, and C3 all need to be calculated and RMax = 3.

3. Identify the value of each field present in each test case.

4. Of those values identified in step 3, identify which values are invalid. Values

that are invalid lie in their field’s invalid space.

5. Identify all sets of fields that are Invalid in Combination (IIC).

First Order Coverage Calculation

6. If C1 was identified in step 2, proceed to step 7. Otherwise proceed to step 13.

7. Apply the first order test case limitation in Section 3.2.1 on page 65. This

means that all test cases which have zero or two or more invalid fields as found

in step 4, or have an IIC set as identified in step 5, are no longer considered in

the first order coverage calculation.

8. Apply the first order field limitation in Section 3.2.1 on page 65. This means

that only fields with an invalid space are considered for the rest of the first order

coverage calculation.

For steps 9 to 12, the steps shown in Section 3.2.1 on page 65 are followed.

9. For each test case not eliminated in step 7, identify the one field that is invalid.

10. Sort the test cases into groups based on the fields identified in step 9.

11. For each group of test cases, calculate first order field coverage, C1, of the invalid

field using the appropriate equation. To find the appropriate equation, reference

Table 2 which is reproduced here for convenience:

94

Is the field numeric? Does the field contain weighted values? Then use eq. on page
no no (29) 47
yes no (38) 55
no yes (50) 59
yes yes (52) 60

12. Combine field coverage values to find C1 using (57) if any field identified in step

8 is weighted or by using (58) if no field identified in step 8 is weighted. Note

that for each field identified in step 8, E [Ni] = 0 for (57).

Multi-Order Coverage Calculation

13. Let the current order R be 2.

14. If CR was identified in step 2, proceed to step 15. If all coverage order values

identified in step 2 have been found, proceed to step 22. Otherwise proceed to

step 21.

15. Apply the Rth order test case limitation in Section 3.2.2 on page 71. This means

that test cases with no invalid values or IIC sets are not considered for Rth order

coverage. Also any test case where the number of fields with an invalid value

and plus number of fields present in all IIC value sets is greater than R are not

considered for Rth order coverage.

16. Apply the Rth order field combination limitation in Section 3.2.2 on page 72.

This means that any field combination with no invalid space is not considered

for Rth order coverage.

For steps 17 to 20, the steps shown in Section 3.2.2 on page 72 are followed.

17. For each test case not eliminated in step 15, identify all invalid fields and IIC

value sets.

95

18. For each combination of R fields, identify all test cases that have invalid and

IIC values entirely contained in the fields of the combination.

19. For each field combination of R fields, compute the coverage based on the iden-

tified value combinations in step 18. Use equation (29) on page 47 for these

multi-order spaces.

20. Combine field combination coverage values to find CR using (62) if any field

combination identified in step 16 is weighted or by using (61) if no field com-

bination identified in step 16 is weighted. Note that for each field combination

identified in step 16, E [Ni] = 0 in both equations.

21. Add one to R to advance to the next order. Go to step 14.

Combining for a Final Result

22. Compute CFuzzSet using the method identified in step 1 and the values from

steps 12 and 20.

96

IV. Implementing the Criterion

To demonstrate that the approach presented in Chapter III can be successfully

implemented and used to improve fuzz test coverage, a model for protocol specifi-

cations, a coverage calculator, and a high coverage fuzz generator were developed.

These three tools were combined into one C++ visual studio project called ExFuzz.

The name ExFuzz, short for Expected Fuzz or Expected Fuzzer, was chosen as

it conveys two important characteristics of the coverage criterion on which the tool

is based. First, as can be seen throughout Chapter III, the metric relies heavily on

the expected value operator to account for uncertainty about the type and location

of vulnerabilities in a protocol implementation. Second, the criterion is designed to

output a coverage percentage that means what a tester expects it should mean. This

clarity allows the tester to use the metric effectively without knowledge of precisely

how it is calculated.

ExFuzz is comprised of three tools: DataModel, ExCov, and GenFuzz. Each tool

produces a C++ object that can be queried by the main application, ExFuzz.

� DataModel: Creates a data model object from an Peach Pit XML file with

the extensions described in Section 4.1.2. The DataModel tool is described in

Section 4.1.3.

� ExCov: Computes the coverage of a set of test cases based on the criterion

presented in Chapter III. This tool is described in Section 4.2.

� GenFuzz: Creates a set of fuzzed test cases from a data model object. The

test cases are designed to achieve high coverage per the ExCov criterion. This

tool is described in Section 4.3.

97

4.1 Creating a Data Model

A protocol specification is a document that standardizes many aspects of a pro-

tocol. These specifications can cover anything from the electrical characteristics of

the signals to medium control and fragmentation. For example, the Internet Protocol

version 4 (IPv4) standard covers addressing conventions, fragmentation procedures

and IP header format [3], while Military Standard 1553B (MIL-STD-1553B) covers

the electrical characteristics of the bus, medium access control and word formats [2].

Many of a protocol’s characteristics described by such standards can be “fuzzed”

in some way. That is, the voltages on a 1553 bus could be manipulated beyond the

allowable levels to attempt to trigger an adverse reaction from a SUT. But this is a

departure from the understood definition of a fuzz test. For this thesis, a fuzz test

attempts to expose a vulnerability in the software of the SUT, not the hardware.

Another characteristic of a protocol that could be fuzzed is medium access control.

the Ethernet standard, 802.3-2015, for instances specifies how to share a medium using

Carrier Sense Multiple Access with Collision Detection. Aspects of this medium access

protocol could be fuzzed, bending the rules defined in the standard slightly to cause

an adverse affect on the SUT [6]. This type of fuzzing will also not be considered as

the opportunities and challenges associated with it are very different from the type

of fuzzing considered in this thesis.

This thesis considers the sections in protocol specifications that assign meaning

to sets of bits, or fields. For example, in the case of the IPv4 protocol, this would

be section 3.1, Internet Header Format, which describes the fields of the IPv4 header

and gives them meaning. Likewise for the MIL-STD-1553B standard and the Eth-

ernet standard, the sections that describe the meaning of the bits in the headers of

those messages are the target of the fuzzing described in this thesis. This fuzzing

involves sending messages that violate the specification’s limitations on the values of

98

the protocol’s fields.

Protocol specifications are not written in any standard way that would allow a

software fuzzing tool to automatically and easily interpret them. Rather, the specifi-

cations rely on humans to read them and build systems or tools that follow the rules

as described. In fact, many bit maps, graphical representations of the meanings of

sets of bits in a message, are drawn using standard text characters. This is true in

MIL-STD-1553B and the IPv4 standard. In order for a software tool to understand

the rules governing an instantiation of a protocol, the protocol specifications must be

converted into a common form that can be understood by a software application.

Ideally this form is human and machine readable, and is specific enough to com-

pletely specify all the relevant rules from a protocol specification yet general enough

to accommodate many protocols. For the type of fuzzing considered in this thesis,

the model must cover all possible realizations of a message, but need not cover the

order or interactions between multiple messages. Peach provides an excellent starting

point to crafting such a model.

4.1.1 Peach Pit Modeling.

As discussed in Chapter II, Peach is a widely used fuzzing platform that has the

capability to fuzz network protocols. A fundamental element of the Peach platform

is the Peach Pit which is an XML document that defines “the structure, type infor-

mation, and relationships in the data to be fuzzed” [10]. A Peach Pit contains three

main parts, the Data Model, the State Model and the Agent.

The Agent describes the monitoring system for the SUT and is especially useful

if Peach can be installed on the SUT. For military data link fuzzing, a Peach defined

agent is not relevant as discussed in Sections 1.4 and 2.1.2.2. The State Model de-

scribes when message transmissions and receptions are allowed to occur. This section

99

can be used to model the aforementioned interactions between messages or rules in-

volving medium access control. Since the scope of this thesis is limited to fuzzing

within a message, the State Model is not of use.

The Peach Pit Data Model describes the composition of a message and defines

the relationships between elements within a message. This data model is an excellent

place to start in the effort to create a generic model of a message defined by a protocol

specification. As a simple example, consider the MIL-STD-1553B command word

definition shown in Figure 19 (retrieved from [2], page 6).

Figure 19. Message standard for a MIL-STD-1553B command word

This 16 bit message can be represented as an XML data model. This is shown in

Figure 20. The Peach data model represents messages as a collection of fields. The

order, existence, and values of these fields are determined by other elements in the

model. The elements used to describe fields are Number and String. String may be

useful when the data model is for a file or ASCII based protocol, but generally in

military data links each field is best represented as a binary number using the Number

element. Each element can be further described using attributes. The attribute size

Figure 20. MIL-STD-1553B command word represented in a Peach data model

100

is required for the element Number ; it sets the number of bits in the field. Other

useful elements from the Peach data model language include:

1. Block: Blocks are used to group a set of like fields together. Blocks can be

repeated allowing the same fields to appear multiple times in a message.

2. Choice: Choices are used to accommodate protocols where the value in one

field controls what fields appear elsewhere in the message. A simple example of

this would be the version field of the IP header. If this field has a value of 4, the

subsequent fields are described by the IPv4 standard. If it has a value of 6, the

subsequent fields are different and are described by the IPv6 standard. Military

data link protocols often have this quirk and require the choice element.

3. Relation: The relation element is a child of a field element and describes how

the value in one field is related to the value in another field, block, or choice.

For example, Peach uses the relation element to model checksums. This element

can also be used with fields like the Data Word Count field shown in Figure

19 by relating the value in the parent field to the number of occurrences of a

different field, block or choice.

4. Hint: The hint element is also a child of a field element. It is used to relay

more information about the field such as which values are valid and which are

invalid.

Open source protocols like those discussed thus far are too simple to illustrate

the necessity of these other data model elements. Unfortunately the standards of the

protocols that this thesis targets, military data link protocols, can not be reproduced

in this setting. For this reason, fictitious protocols were created that mimic the

features of actual military data link protocols. These protocols can be described and

101

modeled freely in this setting. Appendix B describes these protocols and shows how

they can be modeled using a Peach Pit XML file with some extensions.

4.1.2 Custom Peach Pit Extensions.

The Peach data model has a number of limitations that prevented its exclusive

use in this thesis. To overcome these limitations, some additions were made to the

data model that allow more information about each field to be conveyed to a fuzzer or

coverage calculator through an XML file. Other changes were also made that allow

some structural quirks of military data link protocols to be accommodated. The

extensions made were:

1. Valid and Invalid Values: Attributes to the hint element were added that

allow for specification of all valid and invalid values of a field. Peach had already

had a valid values attribute for the hint, but it was only applicable to one peach

mutator and the syntax was inconvenient for specifying large ranges of values.

This modification allows for a complete listing of valid and invalid values in more

compact notation. Specifically, a range of values is represented, throughout the

data model, as a list of values and ranges separated by commas. for example,

the values of 1, 2, 3, 4, 7, 8, 9, 11, 15, and 16 can be compressed to the text

string “1-4,7-9,11,15,16”.

2. Field Type: The coverage criterion ExCov categorizes fields as either standard

or numeric based on the type of data they contained. Section 3.1.3.2 discusses

the differences between these two types. To separate them in the data model,

a type attribute was added to the hint element that can be either “Standard”

or “Numeric”.

3. Rule Set: A unique situation arises when a choice element is located within a

102

repeating block element. In this case, the choice element may appear multiple

times in a single message. Protocols often place rules on which choice can be

made on which repeat. The Restaurant Locator Protocol, described in Section

B.3 provides an example of this. The coverage criterion handles this case as a

type of field combination as described in Section 3.2.3.3. To facilitate automatic

detection of rule violations, the set of rules must be included in the data model.

A RuleSet element was therefore added that appears as the immediate child of

a repeating block containing a choice. The rule set has one child element for

each rule placed on the choices. Three types of rules were found to be necessary

to cover the situations seen in military data link protocols. Support for these

three rules was added to ExFuzz; they are: 1) a position rule: for example,

choice 1 must be made during the first repeat. 2) a repeat rule: for example,

choice 2 must be made no more than three times. And 3) a sequence rule:

for example, choice 4 must always be made the repeat after choice 3. Figure

21 shows the rule set used to describe the word order rules of the Restaurant

Locator Protocol.

Figure 21. An example of the rule set extension to a Peach Pit data model. This
example is from the Restaurant Locator Protocol described in Section B.3.

4. Token as a Relation: The Peach Pit data model uses the token attribute of a

field element to convey that the value in that field determines what choice was

made. This proved to be inadequate for representing some military data link

protocols. Sometimes the field that determined which choice was to be made

103

was in a different part of the message and could not act as a token field. For

this reason a new type of relation element called a choice relation was added.

To select this type of relation, the type attribute of a relation element is set to

“choice”. This allows these fields to act as token fields without being within

associated choice block as the Peach data model required.

5. Repeating Relation Adjustment: The Peach Pit data model allowed for

a type of relation element that linked the value in a field to the number of

repeats of a block. However, the value in the field had to be the exact number

of repeats of the block. In some military data link protocols, the number of

repeats was related to, but not precisely, the value in the related field. For

this reason, an adjustment attribute was added to the relation element. The

value of this element was the difference between the value in the field and the

actual number of block repeats that value represented. In the example of the

Restaurant Locator Protocol, the Num Words field has an adjustment of +1

meaning that when the field has a value of 2, 3 words actually occur in the

message.

6. Field Weighting: The data model also needed a mechanism to convey infor-

mation about which fields are more likely to contain vulnerabilities than others.

This information is incorporated into the coverage criterion in Section 3.2.1,

specifically on page 67 and in (57). The value is termed field weight, and in the

data model is an attribute, weight, that belongs to a hint element. It can take

on any numeric value.

7. Value Weighting: In a similar manner to field weighting, the data model

required a mechanism to convey the weighting of individual values within a

field. Section 3.1.3.3 is devoted to the incorporation of this type of information.

104

To convey value weights a new element was created called Weighted, as a child

of a field element. The weighted element was itself given a child element, Range

that can repeat within a weighted element block any number of times. Each

range element assigns one weight value, through the weight attribute, to a range

of values for the field, using the values attribute. The same range notation is

used as when describing the valid and invalid space.

4.1.3 DataModel Tool.

The DataModel tool takes a Peach Pit with the custom extensions described in

Section 4.1.2 that models a protocol, and builds a C++ object. Figure 22 shows this

process.

DataModel
DataModel.h

DataModel.cpp

Modified
Peach Pit

(XML)

Data
Model
Object

Figure 22. Inputs and Outputs associated with the DataModel tool

The DataModel tool uses an open source XML parser called Tiny XML 2 [24] to

read in the XML file. It then builds a C++ object that is designed to easily interact

with the other fuzzing tools. The object contains a number of different custom data

structures called nodes.

These nodes are related to some of the elements in a Peach pit. For example,

the C++ object defines a field node, a block node, and a choice node. Each node

has parameters unique to its type. For example, the field node has a parameter

for valid values, which contains the information presented in the valid and invalid

attributes of the hint element. The block node contains parameters called minOccurs

105

and maxOccurs, to carry the values supplied by the attributes with the same names

in the Peach Pit Block element.

Each node also has at least one child and one parent node. This allows the nodes to

be conceptually connected by edges in a graph. To build or interpret a message using

the data model, start at the first node, then proceed to its child node, then to that

node’s child, and so forth. Along the way, every field node encountered represents a

set of bits in the message and all the properties associated with those bits. Traversing

the data model in this way not only places the fields in the proper order, but allows

for sets of fields to repeat, and for choices to be made that include some fields and

exclude others.

Any message for a given protocol can be created by tracing a path through this

node map, creating fields as their nodes are encountered. Similarly any message can

be parsed by following the node map, interpreting bits as their fields are encountered,

and making choice and repeat decisions based on their nodes parameters, and special

fields in the message. All the information necessary for creating and parsing messages

is contained in the data model object.

Figure 23 shows the node map for the Restaurant Locator Protocol which is

described in Appendix B. This map does not convey any information about the

parameters within each node, but simply shows how they are arranged.

4.2 Building a Coverage Calculator

The Coverage Calculator tool, ExCov, takes a data model object, and a set of test

cases in the form of a text file and returns a value between 0% and 100%. Figure 24

shows this process.

ExCov looks at the data model object to find invalid spaces and characteristics of

each field in the protocol. It then applies the field, and field combination limitations

106

F

B

C

K

Field

Block Start

Choice Start

Choice End

E Block End

B

E
Repeated Block

F Series of Fields

B

B B B

C

B B B

F

F

F

F

F

B

F

F

F

C

BB

F F

EE

K

K

EE

EEE E

E

F

F

F

F

F

F

F

F

K

E

C

Legend

Figure 23. Node Map for the Restaurant Locator Protocol

(described in Sections 3.2.1 and 3.2.2.2 respectively), to eliminate some fields and

field combinations from the calculation.

The input test cases text file contains one test case per line in hexadecimal. ExCov

107

ExCov
ExCov.h

ExCov.cppTest Cases
(.txt)

Data
Model
Object Coverage

Value

Figure 24. Inputs and Outputs associated with the ExCov tool

parses each test case by converting them to binary and then comparing them to the

data model object. Once the tool understands a test cases’s value for every field, it

applies the test case limitations (described in Sections 3.2.1 and 3.2.2.2) to remove

test cases that contribute no coverage.

The tool keeps track of which invalid values have been tested as it parses test cases,

and then applies the appropriate equations to compute coverage for each order: (29),

(38), (50), (52), (57), (58), (61), or (62) depending on the type of field and the

information available. ExCov uses the simplified coverage value, C2
Fuzz Set, as its final

value. This is computed using (65).

While ExCov implements almost everything described in Chapter III, there is still

work that can be done to improve the calculator. Currently ExCov does not support:

� Invalid in combination (IIC) pairs of fields.

� Numeric fields in the multi-order case

� Unique vulnerability distribution functions, fX(x), for field combinations, choice

relation fields, token fields, or repeating relation fields.

� Field combination value weights

� Field combination weights

No significant barriers to the implementation of these functions in ExCov are

foreseen. Developing unique vulnerability distribution functions would require the

108

collection of significantly more protocol data than was collected for this thesis (shown

in Appendix D). Field combination weighting, field combination value weighting and

IIC pairs will require additional extensions to the Peach Pit XML data model, but

these should not be difficult to make. These functions were not incorporated into the

tool but are left as future work.

4.3 Building a Generative Fuzzer

The GenFuzz tool takes a data model object and produces a set of fuzz test cases.

Figure 25 shows this process.

GenFuzz
GenFuzz.h

GenFuzz.cpp

Test Cases
(.txt)

Data
Model
Object

Figure 25. Inputs and Outputs associated with the GenFuzz tool

The tool is designed to provide high coverage based on the ExCov criterion. To

do this, it focuses on first order coverage. The method creates test cases in which

every field is valid except one. The invalid value changes fields from test case to test

case so that each field with an invalid space is fuzzed at least once before any are

fuzzed twice. No invalid values repeat until the test case has achieved 100% first

order coverage. The valid values that make up the rest of each message are selected

randomly based on their field’s valid space.

To ensure that every invalid value is tested without repeating any, GenFuzz em-

ploys a simple algorithm. For each field it first finds the size of the invalid space,

|I|, from the information in the data model object. GenFuzz then generates invalid

values to test in such a way that none get repeated, and the values are well spaced

109

within the invalid space.

To do this, the algorithm finds a value this thesis terms as the “jump”. The jump,

call it j, is an integer such that j < |I| and GCD(j, |I|) = 1 where GCD stands for

greatest common divisor. Since j and |I| have no common factors, the following can

be said: No multiple of j, call this kj, is evenly divisible by |I| if k < |I|. This means

that for all k < |I|, kj % |I| 6= 0, where % is the modulus operator. Further, the set

{kj % |I|; 0 ≤ k < |I|} is the complete set of positive integers less than |I|. This is

illustrated in Table 4 with |I| = 10.

Table 4. Listing of k · j % 10 result for all 0 ≤ k < 10 and all j < 10 and GCD(j, 10) = 1.

k j = 1 j = 3 j = 7 j = 9
0 0 0 0 0
1 1 3 7 9
2 2 6 4 8
3 3 9 1 7
4 4 2 8 6
5 5 5 5 5
6 6 8 2 4
7 7 1 9 3
8 8 4 6 2
9 9 7 3 1

A few key observations can be made by looking at the example in Table 4. First,

each column contains all the values between zero and nine without repeats. Second,

the central columns have somewhat scrambled the order of these values. In fuzzing

it may be undesirable to test a field’s invalid values sequentially, it would be more

effective to test them by jumping around in the space. Consider the case of numeric

fields presented in Section 3.1.3.2. This simple modulus based algorithm is therefore

the basis for generating invalid values in GenFuzz.

To implement this algorithm in practice, a random non-negative integer less than

|I| is selected. This value is the index of the first invalid test case that will be tried.

110

For example, let I = {6, 7, 8, 10, 12}, so that |I| = 5. Let the randomly selected

integer be 2. Starting with an index of 0, the invalid value of 8 has an index of 2, and

thus 8 will be the first value fuzzed. If the jump was calculated to be 3, the index

of the next value to be tested would be (2 + 3) % 5, or 0. Thus 6 would be the next

value tested. This continues until the algorithm returns that 8 is to be fuzzed again,

in which case every value will have been fuzzed.

Through experimentation, it was found that jump values somewhat near 1/2 of |I|

provided a set of well spaced values. Based on this observation, two simple equations

were used to select a jump. For invalid spaces larger than 10, the tool computes,

using integer division, a jump of:

j =
|I|
2

+
|I|
7
− 1 (89)

And for spaces 10 or smaller:

j =
|I|
2
− 1 (90)

The method will only work if GCD(j, |I|) = 1 however, so the GCD(j, |I|) is

found using the euclidean algorithm [1]. If it is not 1, j is increased by one and the

tool again finds the GCD. This continues until a valid jump is found.

GenFuzz takes the invalid fuzzed value and all the random valid values and builds

a hexadecimal message based on the data model. It prints this message to a file, and

then moves on to the next field to be fuzzed. Since the output of GenFuzz and the

text file input to ExCov have the same format, the coverage provided by the test set

GenFuzz generates can be immediately found by running ExCov.

Figure 26 shows the first order coverage result for 30 test cases generated by

GenFuzz. Notice that fields 12 and up all have an invalid space which has a size of

111

Computing First Order Coverage...

Field 0 (T) has 4 of 4 values tested. That is a coverage of 100% Weight: 10
Field 1 (R) has 4 of 66 values tested. That is a coverage of 69.336%
Field 4 has 3 of 93 values tested. That is a coverage of 65.9109%
Numeric field 6 has 3 of 910 values tested with a coverage of 63.0819%
Field 10 (T) has 3 of 5 values tested. That is a coverage of 90.9702%
Field 12 has 1 of 1 values tested. That is a coverage of 100%
Field 13 has 2 of 2 values tested. That is a coverage of 100%
Field 14 has 3 of 3 values tested. That is a coverage of 100%
Field 16 has 1 of 1 values tested. That is a coverage of 100%
Field 17 has 3 of 3 values tested. That is a coverage of 100%
Field 20 has 1 of 1 values tested. That is a coverage of 100%
Field 22 has 1 of 1 values tested. That is a coverage of 100%
Field 23 has 1 of 1 values tested. That is a coverage of 100%

First Order Coverage: 94.9681%

Figure 26. Partial output of ExCov with 30 test cases generated by GenFuzz for the
Restaurant Locator Protocol

three or less. These fields were completely fuzzed because in the first 30 test cases,

GenFuzz was able to fuzz each field at least three times if it needed to be. The first

two fuzzable fields each have four values tested; this shows that GenFuzz got to these

fields a fourth time. The next field, field 4, has only three values tested because

GenFuzz had not reached it a fourth time. If GenFuzz had been allowed to continue

for a 31st test case, this field would have been tested a fourth time, and coverage

would have increased.

Figure 27 shows the first order coverage result for 1200 cases generated by Gen-

Fuzz. That is enough test cases to completely cover all first order spaces, and thus

first order coverage is 100%. GenFuzz reaches 100% first order coverage in the fewest

number of test cases possible since it does not repeat invalid values.

112

Computing First Order Coverage...

Field 0 (T) has 4 of 4 values tested. That is a coverage of 100% Weight: 10
Field 1 (R) has 66 of 66 values tested. That is a coverage of 100%
Field 4 has 93 of 93 values tested. That is a coverage of 100%
Numeric field 6 has 910 of 910 values tested with a coverage of 100%
Field 10 (T) has 5 of 5 values tested. That is a coverage of 100%
Field 12 has 1 of 1 values tested. That is a coverage of 100%
Field 13 has 2 of 2 values tested. That is a coverage of 100%
Field 14 has 3 of 3 values tested. That is a coverage of 100%
Field 16 has 1 of 1 values tested. That is a coverage of 100%
Field 17 has 3 of 3 values tested. That is a coverage of 100%
Field 20 has 1 of 1 values tested. That is a coverage of 100%
Field 22 has 1 of 1 values tested. That is a coverage of 100%
Field 23 has 1 of 1 values tested. That is a coverage of 100%

First Order Coverage: 100%

Figure 27. Partial output of ExCov with 1200 test cases generated by GenFuzz for the
Restaurant Locator Protocol

113

V. Results and Discussion

In this chapter, fuzz test sets are created manually, by mutating valid messages,

and by using GenFuzz. These test sets are compared against each other using ExCov,

specifically the C2
Fuzz Set metric presented in (65), to answer some questions about the

best approach to fuzzing. Since all the tools in ExFuzz are used in these comparisons,

this chapter serves as validation that the tools work, and, in the case of the ExCov

tool, that the proposed coverage criterion is implementable.

The three protocols created for this thesis and described in Appendix B are used

as the basis for these results and comparisons. Since the Restaurant Locator Protocol

is designed to be similar to military data link protocols, results regarding this protocol

may be directly useful to testers today.

5.1 Mutative Fuzzing Methods

The fuzzing framework presented in Section 1.4 describes the process of mutative

fuzzing as a mutative fuzzer operating on a protocol recording. Since the protocols

used in this section are not implemented anywhere, valid messages were generated

that can act as protocol recordings.

To generate these valid messages, spreadsheets were created in Microsoft Excel

that built hexadecimal messages with randomly selected valid fields. These messages

were then converted into their binary form and, in a second spreadsheet, bit mutations

were applied with a probability entered by the user based on the methods described in

this section. ExCov was then used to compute the coverage of the test sets, returning

coverage values that are used in analyses later in this chapter.

Two main approaches to mutative fuzz set generation will be discussed here. First

is the simple case of sending fully randomized bits. Second is the more complex case

114

of sending messages with only a few bit flips.

5.1.1 Fully Random Bits.

To generate a fully randomized message, the probability of a bit flip was set to

0.5 in the mutative fuzz generation spreadsheets. In general, random fuzzing is not

very effective based on the ExCov criterion. The reason for this is straightforward.

Because of the test case limitation (Section 3.2.1, page 65) a message only provides

first order coverage if it has one and only one invalid field. Any message that has

two or more invalid fields provides no first order coverage, and any message that has

three or more invalid fields provides no second order coverage.

For long messages with lots of fields with large invalid spaces, many fully random

messages will have three or more invalid fields and provide no coverage whatsoever.

This method is more effective if a message has less fields with smaller invalid spaces.

Table 5 shows how each of the created protocols is covered by 1000 random test cases

along with the number of fields, and total invalid space in the protocol (that is, |I|

summed for all fields). Random Fuzzing works best for the Meal Protocol since it

has a much smaller total invalid space than the other protocols. It also works fairly

well for Simple Protocol compared to Restaurant Locator Protocol largely because

Simple Protocol has only 3 fields.

Table 5. A comparison of the coverage provided by the fully random mutative fuzzing
approach with 1000 test cases.

Protocol
Number of Fields
with an Invalid Space

Total Invalid
Space (all fields)

Coverage
(1000 Test Cases)

Simple Protocol 3 690 69.4%

Meal Protocol 8 330 77.9%

Restaurant Locator
Protocol

13 1091 27.7%

115

5.1.2 Partially Random Bits.

A more effective method of creating fuzz cases is to change only a few of the bits,

instead of an average of half of them as in the fully random approach. There are two

basic ways this can be achieved. Either a small subset of bits are randomly selected

to flip, or a choice is made for each whether to flip or not with a low probability of a

flip.

The latter approach was chosen because it proved far easier to implement. A

random binary number is easier to generate in Microsoft Excel than a random draw

from a set without replacement. Future work may involve mutations performed in

this other way to see if it provides better coverage.

With the mutation randomization approach selected, two more questions were

studied and answered to determine the optimal way to generate mutated messages.

They were:

� When creating a series of mutated messages, which is more effective: mutating

a valid message every time, or mutating the previously mutated message?

� What is the optimal probability of a bit flip?

5.1.2.1 Mutation Basis.

A case can be made for either answer to the first question. In support of mutating

the previously mutated message, an issue with mutating a valid message every time

is that the fuzzed message never strays too far from the valid one. Consider a valid

message where the value in a four bit field is binary 0000. If the mutated messages

are created by mutating this valid message each time, it is unlikely that all four bits

will be mutated to test the value 1111. Later in this chapter the optimal bit flip

probabilities are found for each of the three protocols; they range from 3% to 22%.

116

Therefore, in the most optimistic case, the odds this field will be mutated to 1111 are

0.224 = 0.0023, or about twice in 1000 test cases.

If the previous mutated message is the basis for each new mutation, the message

would morph over time into something different, and, it stands to reason, would cover

test cases that would not be covered if mutation begins from the same message every

time. This effect may provide better coverage.

The counter-argument to mutating the previously mutated message approach is

that a chain of mutated messages will quickly become invalid. Like the disadvantage

for completely random fuzzing discussed in Section 5.1.1, this approach will likely

lead to messages with three or more invalid fields providing no coverage under ExCov.

Once a few fields mutate to be invalid, every later message in the mutation change

will also be invalid in those fields unless they are randomly made valid again. In

practice this leads to long stretches of messages that provide no coverage because

they have more than two invalid fields.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200

C
o

ve
ra

ge

Test Cases

Figure 28. Coverage of test sets created using the mutation on mutation approach with
five different original valid messages.

This effect is shown in Figure 28. To generate the Figure, the same starting valid

message from the Restaurant Locator Protocol was mutated to get the first test case.

Each subsequent test case was found by mutating the previous test case. Mutations

were made on a bit by bit basis with a probability of a bit flip set such that the

117

expected number of bit flips per test case was one.

The figure shows five different mutation chains, with points representing the cov-

erage of all test cases up to that point. It can be seen in the figure that at some point

for each mutation chain, the coverage jumps. This is the point where the number of

invalid fields is one, providing first and second order coverage. After the jump the

message likely becomes too invalid to register any more coverage.

If an infinite number of test cases could somehow be tested, 100% coverage would

be expected since every possible combination could be tested. However the largest

tests run, 1000 test cases each, provided about the same amount of coverage, 20%,

as test sets with 50 test cases. This pales in comparison to the coverage provided by

random mutations from one valid test case. That figure was found to be 49.4%, the

average of ten trials which ranged from 29% to 59%. This analysis conclusively shows

that if mutating one valid test case, performing a random mutation on the valid test

case each time provides more coverage than performing the mutation on the previous

mutated case.

The tester will likely have more than one valid message to mutate however. And

while it may be unproductive to mutate based on an already mutated message for

hundreds of test cases, it may be useful to mutate the mutated message a few times,

until it becomes too invalid to provide coverage. Consider this example. A tester

takes 5 valid messages and mutates each of them by changing each bit with some

probability. The tester then mutates these mutations in the same way, 9 times each,

for a total of 10 mutated messages per valid message, or 50 total messages. For this

case it can be said that the tester generated a test set using the mutation on mutation

approach with 10 mutation rounds per valid message.

In this example, the approach taken may achieve better coverage than if the

tester had taken one valid message and mutated it for 100 rounds. Not only will this

118

approach avoid long stretches of mutated messages that provide no coverage since

each mutation set is capped at 10 rounds, but some diversity will also be added

to the messages by having 10 different starting valid messages. One question that

arises with this approach is “how many mutation rounds per valid messsage achieves

optimal coverage?” If the answer is 1, then the mutation on mutation approach does

no better than mutating a valid message each time.

To answer this question, 1000 valid messages were generated in the Restaurant

Locator Protocol. Some of these messages were then selected, and mutated using the

mutation on mutation approach for 1, 2, 4, 7, 10 and 15 rounds. Each number of

rounds was tested with 10 test sets of 1000 test cases each. For example, to test the

coverage of 10 rounds of mutation from random valid messages, 100 valid messages

were selected, mutated 10 times each, and then the coverage for the test set was

recorded. This was done for 10 such test sets. To test the coverage of 1 round of

mutation (so really no mutation on mutation), all 1000 valid messages were mutated

once for each of ten test sets.

The mean and standard deviation of the coverage distributions were then found for

each number of mutation rounds. This result is shown in Figure 29. They show that

even in this case, mutating the mutated message does not improve coverage. While

the standard deviations around one to four mutation rounds suggests the observed

downward trend in the means is not sure to hold at these values, certainly 10 and 15

mutation rounds provide far less coverage. There is no evidence here that any number

of mutation rounds, other one round, is optimal. One mutation round is mutating

from a valid message each time, so in this case mutation on mutation does not appear

to be a useful approach.

The benefits of mutation on mutation fuzzing have not yet been entirely dismissed

however. In mutative fuzzing the tester may not have access to randomly generated

119

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 2 4 6 8 10 12 14 16

C
o

ve
ra

ge

Mutation Rounds per Valid Message

Figure 29. Coverage of test sets created by mutating from random valid messages 1 to
15 times. Each point is the mean of 10, 1000 test case trials. Bars denote one standard
deviation from the mean for each set of trials.

valid messages like the ones used to generate Figure 29. The tester may have only

a few, or even one valid message. If this is the case, it may yet be preferable to use

the mutation on mutation approach rather than start from a small subset of valid

messages each time.

To investigate this case, it was assumed that the tester has only one valid message.

The coverage of tests sets where the mutations were applied to this valid message every

time, and where the mutations were applied in a number rounds were compared. For

example, test sets with four mutation rounds were created by taking a valid message,

mutating it, mutating that mutation, etc. until four messages were generated. The

process then restarted with the valid message, performed four mutations for four

120

more messages, and so on until 1000 messages had been created. The effect of bit

flip probability on coverage was also of interest, so different values of that probability

were tested against as well.

In all 170 test sets of 1000 test cases each were created, 10 for each of the 17

round — expected number of bit flips combinations. The average coverage of these

test sets is shown in Figure 30. It turned out that if only one bit is expected to flip

per message, 4 mutation rounds provides the best coverage. Overall however, one

mutation round, or no mutation on mutation, between 5 and 7 expected bit flips per

message provides the most coverage.

This leads to a final conclusion about the mutation on mutation approach. The

only circumstance where it provides better coverage than mutating a valid message

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 2 4 6 8 10 12 14 16

C
o

ve
ra

ge

Expected Number of Bit Flips per Round

One Mutation Round Four Mutation Rounds Seven Mutation Rounds

Figure 30. Average coverage versus expected number of bit flips for three mutation
on mutation round lengths where all mutations start from same valid message. Each
point is the average of 10 trials, each with 1000 test cases.

121

each time is when the probability of a bit flip is low. Since the tester generally has

control over the probability of a bit flip in their mutator, the mutation on mutation

approach is not more effective than the mutation on a valid message approach in any

identifiable situation.

5.1.2.2 Optimal Bit Flip Probability.

The second question posed in this section is “what is the optimal probability of

a bit flip?” Again there is a kind of balancing act between keeping a valid message

valid by not mutating it enough, and making it too invalid by mutating it too much.

If the expected number of bit flips in a mutation is low, then odds are better that the

mutations that do occur will not render the valid message invalid. This means the

mutated test case would provide no coverage. In contrast, if the expected number of

bit flips in a message is high, the odds are better that more than two fields will become

invalid and the test case will provide no first or second order invalid coverage. This

means that there must be some optimal expected number of bit flips with respect to

coverage.

It stands to reason that this optimal value is dependent on the protocol. If a

protocol has a small amount of invalid space, it will require more bit flips to place a

message in that invalid space. In a similar fashion, If a protocol has a large amount

of invalid space, it should require less bit flips to create a message with one invalid

field. Other properties of a protocol may also influence this optimal value, such as

the number and size of the fields, and make-up of the valid messages being mutated

from.

To find the optimal number of bit flips, test sets were generated by mutating

randomly generated valid messages with varying expected number of bit flips. This

was done for all three protocols.

122

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0 1 2 3 4 5 6 7

C
o

ve
ra

ge

Expected Number of Bit Flips

Figure 31. Average coverage for a mutation based fuzz test of the Simple Protocol based
on bit flip probability. Each data point is the average of 10 trials of 1000 mutated test
cases each. Bars denote one standard deviation from the mean for each set of trials.

� Simple Protocol:

To test Simple Protocol, 70 test sets of 1000 test cases each were generated with

various expected number of bit flip values. The results are shown in Figure 31.

The points in this figure are the average coverage of 10 test sets with the listed

expected number of bit flips. The bars denote standard deviation.

Because it is so simple, Simple Protocol nicely illustrates the balancing act

when it comes to bit flip probability. The figure shows a clear improvement in

coverage as the expected number of bit flips approaches three, and a clear decline

in coverage after the expected number of bit flips passes four. Small standard

123

deviations also validate these trends, and allow the assertion that an expected

number of bit flips of 3.5 produces optimal coverage for mutative fuzzing of the

simple protocol.

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0 2 4 6 8 10

C
o

ve
ra

ge

Expected Number of Bit Flips

Figure 32. Average coverage for a mutation based fuzz test of the Meal Protocol based
on bit flip probability. Each data point is the average of 10 trials of 1000 mutated test
cases each. Bars denote one standard deviation from the mean for each set of trials.

� Meal Protocol:

To test Meal Protocol, 80 test sets of 1000 test cases each were generated with

various expected number of bit flip values. The results are shown in Figure 32.

The points in this figure are the average coverage of 10 test sets with the listed

expected number of bit flips. The bars denote standard deviation.

The arc of this figure is similar to Simple Protocol, but has a less definitive peak.

124

Higher bit flip probabilities are also more effective than in Simple Protocol,

perhaps a reflection on the relatively fewer invalid cases in Meal Protocol (see

Table 5). The standard deviation is again fairly small compared to the jumps

in the means across the figure. This again validates the observed curve, and

suggests the peak wasn’t created purely by chance. Oddly the best guess, based

on this figure, for an optimum number of bit flips is again 3.5 flips.

� Restaurant Locator Protocol: To test Restaurant Locator Protocol, 90

test sets of 1000 test cases each were generated with various expected number

of bit flip values. The results are shown in Figure 33. The points in this Figure

0.55

0.6

0.65

0.7

0.75

0 1 2 3 4 5 6 7 8

C
o

ve
ra

ge

Expected Number of Bit Flips

Figure 33. Average coverage for a mutation based fuzz test of the Restaurant Locator
Protocol based on bit flip probability. Each data point is the average of 10 trials of
1000 mutated test cases each. Bars denote one standard deviation from the mean for
each set of trials.

125

are the average coverage of 10 test sets with the listed expected number of bit

flips. The bars denote standard deviation.

In contrast to the other two protocols, the RLP does not have a clear optimal

number of bit flips. Not only are the averages all around 72% between 2 and

5 expected flips, but the standard deviations are large as well. This is surely

a result of the increased complexity of this protocol. It features more fields

and more invalid test cases than the other protocols, and also implements three

choices and a rule set. Based on the fact that the maximum is also the mid

point between 2 and 5, the apparent cut-offs for the peak of the curve, once

again 3.5 bit flips is optimal.

Despite all three protocols having the same optimal expected number of bit flips,

it is believed, based on the discussion presented earlier, that this value still depends

on the protocol. The three invented protocols just happened to share the same value

for the optimal number of expected number of bit flips.

5.2 Generative versus Mutative Fuzzing

Three methods for fuzz set generation have been presented thus far. Fully random

mutative fuzzing was presented in Section 5.1.1, partially random mutative fuzzing

with an expected number of bit flips per mutation was presented in Section 5.1.2,

and generative fuzzing using GenFuzz was presented in Section 4.3. Each of these

methods was used to generate test sets for the three protocols, and their coverage

was found.

5.2.1 Simple Protocol.

Figure 34 shows the results of the three approaches to fuzz set generation for

Simple Protocol. Like in previous figures, each point is the average of ten test sets

126

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

C
o

ve
ra

ge

Test Cases

Random Bit Flips GenFuzz

Figure 34. A comparison of three fuzz generation methods for the Simple Protocol

with the exception of GenFuzz, which has little variation between test sets due to

its largely deterministic generation approach. Standard deviation is not shown for

clarity, but is less than 10% for all points and less than 1% for points at 1000 test

cases.

Not surprisingly, GenFuzz performs the best at any number of cases. The bit flip

approach, using the optimal expected number of bit flips, 3.5, performs remarkably

well also. This suggests that with the proper probability of bit mutation, simple

protocols are well covered by mutative fuzzers.

127

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

C
o

ve
ra

ge

Test Cases

Random Bit Flips GenFuzz

Figure 35. A comparison of three fuzz generation methods for the Meal Protocol

5.2.2 Meal Protocol.

Figure 35 shows the results of the three approaches to fuzz set generation for Meal

Protocol. Like in previous figures, each point is the average of ten test sets with the

exception of GenFuzz, which has little variation between test sets due to its largely

deterministic generation approach. Standard deviation is not shown for clarity, but

is less than 9% for all Random results, less than 14% for all Bit Flip results, and less

than 1% for all Bit Flip results with 200 or more test cases.

Like with Simple Protocol, GenFuzz performs the best while an optimal number

of bit flips does very well compared to random messages. Coverage for Meal Protocol

is also very high. First order coverage actually reaches 100% from GenFuzz at 330

128

test cases. Its slow rise beyond that is caused by test cases that contribute second

order coverage being added. Once again, an optimal number of bit flips provides

almost as much coverage as GenFuzz. GenFuzz is by no means perfect, but based on

its methodical switching between fields to fuzz, it would be very difficult to create a

fuzzer that performs better for the first 100 test cases.

5.2.3 Restaurant Locator Protocol.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

C
o

ve
ra

ge

Test Cases

Random Bit Flips GenFuzz

Figure 36. A comparison of three fuzz generation methods for the Restaurant Locator
Protocol

Figure 36 shows the results of the three approaches to fuzz set generation for the

Restaurant Locator Protocol. Like in previous figures, each point is the average of

ten test sets with the exception of GenFuzz, which has little variation between test

129

sets due to its largely deterministic generation approach. Standard deviation is not

shown for clarity, but is less than 10% for all Random results, less than 9% for all Bit

Flip results, and less than 5% for all Bit Flip results with 50 or more test cases.

The Restaurant Locator Protocol is designed to be the most like actual military

data link protocols, so its results may have the largest impact on actual fuzzing work.

Due to the protocol’s complexity, random fuzzing is barely effective. With standard

deviations that are at times greater than the mean, the decrease in this curve at 500

test cases can be explained by random variation.

In contrast to the other protocols, the bit flip approach does not rival the GenFuzz

approach until the number of test cases exceeds 500. This suggests that in cases

where there is a limited number of test cases that can be tested against a system, a

generative fuzzer will be far preferable to a mutative fuzzer. A Generative fuzzer that

considers second order coverage (GenFuzz does not) may prove even more effective

in this region.

At the opposite end of the figure, it appears that the Bit Flip method is set to

surpass the GenFuzz method. This is expected to be the case if the methods had

been tested further. GenFuzz is set up to focus on first order coverage. It achieves

100% first order coverage after 1091 test case for RLP. The fuzzer does not generate

test cases that have more than one invalid field, so 100% second order coverage can

never be achieved. Since the other two methods are purely probabilistic, any message

is possible, therefore 100% coverage is possible with enough test cases. Bit Flips is

bound to surpass the coverage of GenFuzz eventually. A fuzzer that considers second

order invalid spaces will easily be able to out perform GenFuzz and the Bit Flip

approach.

130

5.3 Generative versus Manual Fuzzing

Another way for a tester to generate test cases is to select them manually. Strictly

speaking many may not consider this approach fuzzing since inputs are not auto-

matically generated. In a way it more resembles a red-team vulnerability discovery

approach. But it is possible for a tester to analyze a protocol and select cases thought

to provide high coverage. It is also possible for the coverage calculator to compute a

coverage value for these test cases.

A generative fuzzer has access to the data model, and should theoretically have

access to all the information a tester has. For this reason, a generative fuzzer should

always be able to be designed that provides coverage that meets or exceeds the cover-

age of a manually generated test set. But generative fuzzers aren’t necessarily perfect,

and GenFuzz certainly has some flaws that would allow a manually crafted test set

to exceed its coverage.

The obvious drawback to manually crafting a test set is the time and effort required

of the tester. GenFuzz generates thousands of test cases in seconds or less; it takes

minutes to craft just a few messages manually even if the tester has some tools to

help with the task.

To compare these two approaches, some fuzz test sets were crafted manually.

Previously developed spreadsheets, created to test the various components of ExFuzz,

were used allowing the messages to be generated with ease. The spreadsheets listed

every field in a protocol and allowed entry of any desired value and include whatever

field and words wanted in a message. They automatically generated the hexidecimal

representation of each message, and some copy and pasting placed the test set into

the text file format recognized by ExCov. This section compares these test sets with

some generated by GenFuzz.

131

5.3.1 Simple Protocol.

Since the simple protocol is such a straightforward protocol it wasn’t difficult to

generate cases using a spreadsheet. In fact, generating all 690 first order invalid cases

simply required using the Excel fill tool to create sequential lists of numbers. Each

test case required one invalid field and two valid fields. The valid fields were selected

using a random function, and each invalid value was tested only once.

Table 6. A comparison of manual test set generation and GenFuzz for Simple Protocol

Test Cases Method 1st ord. cov. 2nd ord. cov. Coverage
Generation
Time

690
Manual 100% 68.1% 84.1% 7 min
GenFuzz 100% 68.1% 84.1% < 1 sec

1000
Manual 100% 71.0% 85.5% 20 min
GenFuzz 100% 73.3% 86.7% < 1 sec

The top half of Table 6 shows the coverage result for this manual test set. As

designed, it achieved 100% first order coverage. GenFuzz also acheived this mark as

it was designed to do. Second order coverage was also identical. This was no surprise

since every test case contributed two invalid field combinations, the combinations that

include the one invalid field. Since no invalid value was repeated, no field combination

value was repeated either, guaranteeing equal coverage. The major difference between

these two approaches is that GenFuzz took less than a second to generate these test

cases while it took 7 minutes to craft them in Microsoft Excel.

Since these results provide little new information, another 310 test cases were gen-

erated to try to get as much second order coverage as possible. Since GenFuzz focuses

on first order test cases, it does not create messages with two invalid fields. Therefore,

in an attempt to outperform GenFuzz, a series of 310 messages with two invalid fields

were created, roughly equally divided between the three field combinations.

When ExCov was run on this test set, it was surprising to discover that GenFuzz

actually provided more coverage than the manual set did. After a little analysis it was

132

discovered why. When a message in Simple Protocol has one invalid field, say field

A, it provides coverage for two field combinations, A-B and A-C. When a message

has two invalid fields say A and B, it only provides coverage for field combination

A-B. A-C and B-C are not covered because the other field not in the combination is

invalid. This is dictated in the Rth order test case limitation in Section 3.2.2.2, on

page 71.

This meant that every extra test case that was generated only provided coverage

to one field combination. Every test case GenFuzz produced provided coverage for two

field combinations unless the randomly selected pair of values happened to repeat. It

is reasonable to think that testing some messages with two invalid fields should provide

more coverage than testing more of the same valid-invalid combinations. The reason

this does not provide more coverage is that a PMF specifically for vulnerabilities

in second order spaces has not yet been developed. Such a PMF could cause the

manually created test set to provide more coverage than GenFuzz because the manual

approach created some field combinations with two invalid fields while GenFuzz did

not.

5.3.2 Meal Protocol.

Meal Protocol was not simple enough to generate all first order values in a short

amount of time as was the case with Simple Protocol. Instead each field with an

invalid space was fuzzed, one at a time. Since the protocol involves three different

words, it was simply set up so that the messages would rotate between the breakfast

word, the lunch word and the dinner word. Care was taken to fuzz each field in a

word once before repeating fields as GenFuzz did. Test set creation was stopped when

each field with an invalid space small enough to manually cover had been covered,

plus a few more cases with invalid values in the lager invalid spaces.

133

Table 7. A comparison of manual test set generation and GenFuzz for Meal Protocol

Test Cases Method 1st ord. cov. 2nd ord. cov. Coverage
Generation
Time

24
Manual 80.9% 69.2% 75.0% 15 min
GenFuzz 81.3% 70.3% 75.8% < 1 sec

The results are shown in Table 7. GenFuzz performed slightly better because it

did not have a restriction on rotating between the three words. This allowed it to

more evenly cover all the fields with invalid spaces, maximizing coverage. Again,

the generation time is the major difference between the two fuzz set generation ap-

proaches.

5.3.3 Restaurant Locator Protocol.

Like the Meal Protocol, the Restaurant Locator Protocol is made up of a number

of words. Unlike the Meal Protocol, more than one word may appear in a message.

In fact, all 6 words can appear in the same message. To make the fuzz set generation

easier, every message was set at the maximum valid length which contained all 6

words. The fuzzable fields were then made invalid one at a time for each test case.

Once all fields with invalid spaces were fuzzed, each new message fuzzed a field for a

second time. This is the same procedure applied in GenFuzz.

50 test cases were created, which took about ten minutes. It was decided to stop

at this point because all the fields with smaller invalid spaces had been completely

fuzzed, and only fields with very large invalid spaces remained. The results of this

fuzzing are shown in Table 8.

Table 8. A comparison of manual test set generation and GenFuzz for the Restaurant
Locator Protocol

Test Cases Method 1st ord. cov. 2nd ord. cov. Coverage
Generation
Time

50
Manual 96.8% 67.8% 82.3% 10 min
GenFuzz 97.3% 44.1% 70.7% < 1 sec

2000 GenFuzz 100% 53.2% 76.6% 5 sec

134

It was initially surprising to find that the manual test set had a higher coverage

than GenFuzz’s test set did. The number of generated test cases was increased to

2000 and GenFuzz was tested again to still find that its coverage was significantly

below that of the 50 test case manual set. It was noticed that GenFuzz actually

outperformed the manual generation method in first order coverage, but trailed far

behind in second order coverage.

It was determined after some analysis that the reason for this was the choice to

use the maximal length message every time. GenFuzz is set up to randomly select

message length along with the other valid values it selects for each test case. This

means that most messages in the GenFuzz test set are shorter than in the manual

test set.

A longer message includes more field combinations, so every test case in the manual

set guaranteed a near maximal amount of second order coverage. Since no two invalid

values were repeated, no field combination values were repeated either. Also since

each field with an invalid space was fuzzed, almost every possible field combination

was fuzzed at least once. This provided a major boost to second order coverage.

GenFuzz relies on randomly including the necessary words to test each field com-

bination. Even with 2000 test cases many field combinations went untested. This

allowed the manual generation method with 50 test cases to provide more coverage

than GenFuzz at 2000 test cases. The biggest take away here is that a generative

fuzzer ought to take advantage of long message lengths when it can to increase second

order fuzzing.

135

VI. Future Work and Conclusion

6.1 Future Work

Throughout this thesis references have been made to problems that could have

been better solved with more time, or issues that could and ought to be address with

future work. A compilation of these potential endeavors that would contribute more

to this work is presented here.

� Improve Vulnerability PMFs: A theme touched on at many points in this

thesis is the ExCov criterion’s reliance on a probabilistic model of the nature

of vulnerabilities in general. The model used in this thesis, created in Section

3.3 using data from Appendix D, is developed from real world protocols, but

not real world vulnerabilities. Surveying real vulnerabilities across data link

like protocols and incorporating the information gained into the vulnerability

models and then the PMFs will greatly improve the legitimacy of the coverage

criterion as a whole.

� Develop a field combination coverage equation: In Chapter III, the equa-

tions that take a set of invalid test cases and return a coverage value are all

based on first order fields. When the calculation moves to multi-order field

combinations, the old coverage equation is used for convenience. This may not

be wrong exactly, with a unique PMF an argument could be made that this

is the proper equation, but the uniqueness of field combinations compared to

fields suggest that another derivation unique to multi-order spaces should be

derived. This may be a complex effort, deriving the equation for a single field

was no small feat, and multi-order field combinations are far more convoluted

than single fields.

136

� Add capabilities to ExCov: In Section 4.2 on page 108 some capabilities

missing from ExCov are listed. Some of these exist in Chapter III and just

need to be added to the tool, others need theory to be developed and added

to the coverage criterion. Doing this for these features will improve ExCov’s

applicability and usability.

� Improve GenFuzz: In Chapter V, there are a number of mentions of the

potential to improve the generative fuzzer application GenFuzz. GenFuzz’s

main failing is that it focuses only on first order and not second order test

cases. Another generative fuzzer could be designed that focuses on both orders

to maximize coverage. Aspects of GenFuzz could also be improved, like adding

support for weighted fields or values, or unique fuzzing approaches for numeric

and basic fields.

� Investigate other mutation approaches: Mentioned in Section 5.1.2 is

the potential to study alternative methods of mutative fuzz set generation. The

method used in this thesis is to mutate each bit with some probability set such

that the expected total number of mutated bits in a message is a set value. This

means that a message may experience no mutations, or many more mutations

than intended. An alternative approach to mutation would set the number

of mutations per message at a fixed value, randomly selecting the appropriate

number of bits for mutation. Testing whether or not such an approach provides

more or less coverage could help designers of mutative fuzzing tools make better

decisions about their fuzzer’s operation.

� Test ExFuzz on open source protocols: In the unlimited distribution

portion of this thesis, ExFuzz was only ever applied to protocols crafted specif-

ically for this thesis. Testing the tool against real protocols should highlight

137

its strengths and weaknesses and suggest further areas of improvement. It may

also uncover some vulnerabilities in these protocols.

� Improve the usability of ExFuzz: Since ExFuzz is currently a Microsoft

Visual Studio C++ project, it is not very user friendly or distributable. For

this tool to be ultimately useful, it needs to feature a user friendly interface and

clear documentation. These could be developed for ExFuzz, or ExFuzz could

be integrated within some other fuzzing tool. From its conception, ExFuzz was

designed to have some similarities to Peach, namely a Peach Pit, to support

integration with that tool in the future.

6.2 Conclusion

Negative testing, specifically fuzz testing, is crucial to defending weapon systems

from cyber attacks. To implement fuzz testing effectively across all weapon system

components, a way to measure the effectiveness of any test is needed. This thesis

proposed such a metric, called a coverage criterion.

Chapter II looked at the state of the art in fuzz testing and a few attempts to

apply some sort of metric to a fuzz test. The chapter concluded that none of these

efforts produced a metric that could be easily understood by a tester without intricate

knowledge of the criterion’s construction. In this chapter some open source fuzzing

frameworks, Peach and Sulley, were investigated to see how their strengths might be

leveraged to create a tool that can measure coverage.

Chapter III developed equations and procedures that allow computation of the

coverage of a set of fuzz test cases using this thesis’s proposed definition for coverage:

the expected percent of existing vulnerabilities discovered by a set of test cases. The

method was named ExCov, short for expected coverage, because it relies heavily on

probabilistic expectation, and also because it means what a tester would expect it to

138

mean.

With the criterion developed, a suite of tools built around the method was pre-

sented in Chapter IV. This tool suite was called ExFuzz. ExFuzz consists of three

main parts: a data model parser called DataModel that interperates a Peach Pit

data model with some custom modifications; a coverage calculator called ExCov that

implements the new criterion; and a generative fuzzer called GenFuzz that produces

a high coverage test set for any data model based on the coverage criterion.

Finally, Chapter V used ExFuzz to compare a variety of fuzz test set generation

approaches. By doing this, some questions were answered regarding which generations

methods are the most effective and by how much. These results can be used to develop

and execute better fuzz tests. By exercising the ExFuzz tool, the implementability of

the ExCov criterion was verified. This chapter also demonstrated how the tool can

be used to create high coverage test sets with GenFuzz.

Fuzz testing is in many ways a very imprecise science. The possible number of

inputs nearly always borders on infinite and despite the amount of testing done,

there is almost always the possibility that a vulnerability has been missed. Without

an effective way to measure the quality of a set of fuzz test inputs, this technique

will remain imprecise, leaving testers with a great amount of uncertainty despite the

number or quality of fuzz tests they apply. By introducing such a method, fuzz testing

techniques may be improved so that they may be used with confidence to defend or

most critical systems.

139

Appendix A. Terms and Definitions

This appendix contains two tables. The first lists some acronyms used throughout

the thesis,and their meaning. The second table lists a variety of terms used throughout

the thesis that have a non-obvious meaning, or may require a precise definition. These

terms are accompanied by a description of the term, its importance and a precise

definition if necessary.

Table 9. A list of the acronyms used throughout this thesis and their definitions

Acronym Description First Mention

GCD Greatest Common Divisor Sec. 4.3, Pg. 110

GPS-SPS Global Positioning System - Standard Positioning Service Ch. I, Pg. 18

IIC Invalid in Combination Sec. 3.2.2, Pg. 70

IPv4 Internet Protocol Version 4 Sec. 4.1, Pg. 98

MIL-STD Military Standard Sec. 4.1, Pg. 98

PMF Probability Mass Function Sec. 3.1.2, Pg. 45

RLP Restaurant Locator Protocol Sec. B.3, Pg. 149

SUT System Under Test Ch. I, Pg. 14

SVCov Semi-valid Input Coverage Sec. 2.2.2, Pg. 29

Table 10. A list of key terms used throughout this thesis and their definitions

Term Description Reference

Adequacy

Criterion

The thing or things that are measured to determine the

adequacy of a test
Sec. 2.2.1,Pg. 28

Agent
An entity responsible for monitoring the SUT for any un-

expected behavior during a fuzz test.
Sec. 1.4, Pg. 17

Choice

An XML element used in a Peach Pit that allows the value

in one field determine which set of fields appears elsewhere

in the message.

Sec. 2, Pg. 101

140

Term Description Reference

Choice Relation*

A type of field in a Peach Pit data model that dictates the

result of a choice elsewhere in the model using a relation

child element.

Sec. 4.1.2, Pg.

104

Coverage

A term generally understood to mean the extent to which a

test set covers the space of inputs in a fuzz test. This thesis

proposes a specific definition for this term as: the expected

percent of existing vulnerabilities discovered by a set of test

cases.

Sec. 1.5, Pg. 20

Coverage

Calculator*

An application that computes the effectiveness of a fuzz

test set based on a coverage criterion.
Sec. 1.4, Pg. 17

Coverage

Criterion

An adequacy criterion that uses a measurement of coverage

to determine the adequacy of a test.
Sec. 1.3, Pg. 14

DataModel (C++

tool)

The C++ tool developed as part of ExFuzz that builds a

data model object from a modified Peach Pit XML docu-

ment

Sec. 4.1.3, Pg.

105

DataModel

(XML)

A Peach Pit XML file that is modified with the extensions

shown in Section 4.1.2.
Sec. 4.1, Pg. 98

Discover*
A test case is said to discover some vulnerability V if it is

the first test case in a test set to trigger V .
Sec. 3.1, Pg. 34

Disjoint*
A numeric field is disjoint if the values of its invalid space

is not contiguous.

Sec. 3.1.3.2, Pg.

52

ExFuzz*

Expected Fuzzer. This is the C++ project that combines

the three tools created to demonstrate the ExCov coverage

criterion.

Ch. IV, Pg. 97

ExCov*

Expected Coverage. This term can refer to either the cov-

erage criterion presented in this thesis, or the coverage cal-

culator that implements the criterion.

Ch. III, Pg. 33;

Sec. 4.2, Pg.

106

Field

The fundamental element of a protocol. Every bit in a

message belongs to a field, and every field has a length (in

bits) and a valid space.

Sec. 3.2.1, Pg.

63

141

Term Description Reference

Field

Combination*

A set of two or more fields. Vulnerabilities reside in field

combinations instead of fields when they depend on the

values of multiple fields.

Ch. III, Pg. 33

Field Coverage*

A measure of coverage for a single field in a protocol. This

is an intermediate result in the computation of the cover-

age of a test set. Field Coverage is explicitly defined as

The expected percentage of existing vulnerabilities in a field

discovered by a set of test cases.

Sec. 3.1, Pg. 34

Fuzzing

A method of vulnerability discovery where little is known

about the inner workings of the system under test. Accord-

ing to [22], “Fuzzing is the the process of sending intention-

ally invalid data to a product in the hopes of triggering an

error condition of fault.”

Sec. 1.3, Pg. 14

Generative

Fuzzing

A method of test set generation where invalid messages are

generated based on a protocol model or data model.
Sec. 1.4, Pg. 16

GenFuzz*

Generative Fuzzer. The C++ tool developed as part of Ex-

Fuzz that generates a set of test cases from a data model

that acheives high coverage as measured by the ExCov cri-

terion.

Sec. 4.3, Pg.

109

Invalid in Combi-

nation (IIC)*

A set of values for a field combination that are valid inde-

pendently, but invalid when combined.

Sec. 3.2.2.1, Pg.

70

Invalid Space*
The set of values that do not meet the requirements of the

protocol specification for a field or field combination

Sec. 3.1.1, Pg.

36

Mutative Fuzzing

A method of test set generation that involves taking a valid

message and changing some of the bits to make it invalid.

Mutative fuzzing does not require a protocol model or, in

some cases, any knowledge of the protocol whatsoever.

Sec. 1.4, Pg. 16

142

Term Description Reference

Numeric Field*

A type of field where invalid values have an implied numeric

meaning. An important characteristic of this field type is

that vulnerabilities are assumed to always be contiguous in

the invalid space.

Sec. 3.1.3.2, Pg.

50

Order*

The number of fields being assessed or fuzzed. An N th

order vulnerability spans N fields, and N th order coverage

refers to the coverage of N th order vulnerabilities.

Ch. III, Pg. 34

Protocol Model
A general term for what is referred to as a data model in

this thesis. See data model (XML)
Sec. 1.4, Pg. 16

Repeating

Relation

A type of field in the Peach Pit data model that sets the

number of times a block of fields repeats.
Sec. 3, Pg. 101

Specific

Vulnerability

Space*

A set of values that trigger one specific vulnerability. A

specific vulnerability space is always a subset of a field’s

vulnerability space.

Sec. 3.1.1, Pg.

37

Structure Field*

A field that contains information about how a message is

structured or interpreted. There are three types of struc-

ture fields used in this thesis, the repeating relation field,

the choice relation field, and the token field.

Sec. 3.1.3.1, Pg.

48

System Under

Test (SUT)

The system that is being tested for vulnerabilities. In fuzz

testing, this system receives the fuzzed messages and is

monitored for faults.

Sec. 1.4, Pg. 17

Test Case
One message, or instance of a protocol, applied to the SUT

during a fuzz test.

Sec. 3.2.1, Pg.

63

Test Set

A set of messages, or test cases, to be applied to a SUT in

a fuzz test. The coverage calculator computes to coverage

of this set of messages.

Sec. 1.4, Pg. 16

Tester The human designing, running, and observing the test. Sec. 1.3, Pg. 14

Token

A type of field in a Peach Pit data model that dictates the

selection made by a choice block. Token fields are always

within their choice block in contrast to choice relation fields.

Sec. 3.2.3.2, Pg.

76

143

Term Description Reference

Valid Space*
The set of values that meet the requirements of the protocol

specification for a field or field combination

Sec. 3.1.1, Pg.

36

Vulnerability

According to Microsoft, a vulnerability is “a weakness in

a product that could allow an attacker to compromise the

integrity, availability, or confidentiality of that product.”

This definitions suits this thesis’s needs fine, with the prod-

uct being the SUT.

[20]

Vulnerability

Space*

A set of values that is the union of all specific vulnerability

spaces of a field. A vulnerability space is always a subset

of an invalid space.

Sec. 3.1.1, Pg.

37

* Denotes terms created in the context of this thesis.

144

Appendix B. Protocol Examples

This appendix describes the fictitious protocols that were written to faciliate devel-

opment of a coverage criterion, and provide insight into different methods of fuzzing.

The protocols were designed with varying levels of complexity. The simplest proto-

col, termed Simple Protocol, was used to confirm basic coverage calculations by hand.

Two, more complex, protocols included some features that were more difficult for

the ExFuzz suite to handle, and were designed to closely resemble military data link

protocols. In order of complexity, these are Meal Protocol and Restaurant Locator

Protocol.

In this appendix, each protocol will be described as it might appear in a protocol

standard document. Then the Data Model, presented in section 4.1, that describes

the protocol will be presented. These data models have been supplied as inputs to

the ExFuzz tools to produce the results in Chapter V.

B.1 Simple Protocol

The simple protocol consists of three, eight bit fields. All three fields have the

same rules and meaning. They must contain an ASCII uppercase letter, that is a

value between decimal 65 (A) and 90 (Z). This means that the decimal values 0 to 64

and 91 to 255 are invalid. This protocol could be imagined as part of a larger system,

perhaps passing three letter error or status codes, or maybe domestic airport codes.

Figure 37 shows the bit map for the Simple Protocol.

145

24 bits

Each field contains an 8-bit ASCII capital letter

Field 1 Field 2 Field 3

8 bits 8 bits 8 bits

Figure 37. Bit map for the Simple Protocol

This protocol is represented by the modified Peach Pit Data Model shown here:

<DataModel name=”SimpleProtocol”>
<Number name=”LTR1” size=”8”>

<Hint valid =”65-90”/>
</Number>
<Number name=”LTR2” size=”8”>

<Hint valid =”65-90”/>
</Number>
<Number name=”LTR3” size=”8”>

<Hint valid =”65-90”/>
</Number>

</DataModel>

B.2 Meal Protocol

The meal protocol is imagined as a protocol that transfers a meal order, perhaps

from a customer to the kitchen. The protocol is organized into bytes, and a message

is 2 to 8 bytes long. The message structure is shown in Figure 38.

1 - 7 Data Bytes

8 - 56 bits8 bits

16 - 64 bits

Initial Byte

Figure 38. The structure of a message in the Meal Protocol

The first byte in every message is called the initial byte and carries meta data

about the order such as the order number, the meal, (breakfast, lunch, or dinner) and

the number of people served by the order. The remaining bytes convey the drink,

meal, and dessert orders. Since the food is different depending on which meal is being

146

served, the definition of these data bytes depends on the meal in the initial byte field.

The bit maps for the initial and data bytes are shown in Figure 39. Table 11 describes

each field and lists their valid values.

0 1 2 3 4 5 6 7

Drink

Initial Byte

Meal DessertDinner

Lunch

Breakfast

Data Bytes

Meal

Drink Meal

Drink

bits :

Order # Meal Num_Items

Figure 39. Bit maps for the bytes in the Meal Protocol

Field Name Description
Length

(bits)

Valid Values

(decimal)

Order # An identification number for the order 3 0 - 7

Meal (Initial Byte)
Selects the type of meal, Breakfast (0), Lunch (1),

or Dinner (2)
2 0 - 2

Number of Items

(Num Items)

Indicates the number of data bytes in the message.

This can be thought of as the number of customers

on the order.

3 1 - 7

Drink (Breakfast) Water (0) or Coffee (1) 1 0 or 1

Meal (Breakfast)
There are 15 breakfast items on the menu. The value

here indicates which item is requested.
7 1 - 15

Drink (Lunch) Water (0), Soda Pop (1), or Juice (2) 2 0 - 2

Meal (Lunch)
There are 21 lunch items on the menu. The value

here indicates which item is requested.
6 1 - 21

Drink (Dinner) Water (0), Soda Pop (1), or Juice (2) 2 0 - 2

147

Field Name Description
Length

(bits)

Valid Values

(decimal)

Meal (Dinner)

There are 16 dinner items on the menu. The value

here indicates which item is requested, with item 16

being represented as decimal 0.

4 0 - 15

Dessert

There are 4 desserts on the menu. The value here

indicates which dessert is requested, with dessert 4

being represented as decimal 0.

2 0 - 3

Table 11. A description of the fields in the Meal Protocol

This protocol is represented by the modified Peach Pit Data Model shown here:

<DataModel name=”MealOrder”>
<Number name=”OrderNumber” size =”3” value=”0”>

<Hint valid =”all”/>
</Number>
<Choice name=”MealTypeChoice”>

<Block name=”Breakfast”>
<Number name = ”BreakfastType” token=”true” size=”2” value=”0”>

<Hint priority=”5”/>
</Number>
<Number name=”BNum Items” size=”3”>

<Relation type=”count” of=”BreakfastItem” adjustment=”0”/>
<Hint valid =”1-7”/>

</Number>
<Block name=”BreakfastItem” minOccurs=”0” maxOccurs=”7”>

<Number name=”BDrink” size=”1”>
<Hint valid =”all”/>

</Number>
<Number name=”BMeal” size=”7”>

<Hint valid =”1-15”/>
</Number>

</Block>
</Block>
<Block name=”Lunch”>

<Number name = ”LunchType” token=”true” size=”2” value=”1”/>
<Number name=”LNum Items” size=”3”>

<Relation type=”count” of=”LunchItem” adjustment=”0”/>
<Hint invalid =”0”/>

</Number>
<Block name=”LunchItem” minOccurs=”0” maxOccurs=”7”>

<Number name=”LDrink” size=”2”>
<Hint invalid =”3”/>

</Number>
<Number name=”LMeal” size=”6”>

<Hint valid =”1-21”/>
</Number>

</Block>
</Block>
<Block name=”Dinner”>

<Number name = ”DinnerType” token=”true” size=”2” value=”2”/>
<Number name=”DNum Items” size=”3”>

<Relation type=”count” of=”DinnerItem” adjustment=”0”/>
<Hint invalid =”0”/>

</Number>
<Block name=”DinnerItem” minOccurs=”0” maxOccurs=”7”>

<Number name=”DDrink” size=”2”>
<Hint invalid =”3”/>

148

</Number>
<Number name=”DMeal” size=”4”>

<Hint valid =”all”/>
</Number>
<Number name=”DDessert” size=”2”>

<Hint valid =”all”/>
</Number>

</Block>
</Block>

</Choice>
</DataModel>

B.3 Restaurant Locator Protocol

Restaurant Locator Protocol (RLP) is imagined as a protocol that delivers infor-

mation about restaurants anywhere in the world. A RLP message consists of one to

six words. The first word must always be the same word, called Word 1. Following

Word 1, Words 2, 3, and 4 may appear in any order with the following caveats:

� Word 2 must always be immediately followed by Word 3, and Word 3 must

always be preceded by Word 2. This is because these words convey latitude and

longitude, and it would not make sense for one to exist without the other.

� Words 2 and 3 may not appear more than once in a message. A restaurant can

not be located at two different points.

� Word 4 may not be repeated more than 3 times.

Each word is 16 bits long. Since a message may be from one to six words in

length, it may be from 16 to 96 bits in length. Figure 40 shows the structure of an

RLP message.

The first three bits of each word define which word it is. The remaining 13 bits

convey some information about the restaurant associated with the message. Word

4 also can be one of three different types, depending on the value bits 3 - 5. The

remaining fields in the word depend on this value. Word 4 type 3 has another quirk

where some fields depend on the value of bit 6. If bit 6 is a 0, bits 7 - 14 are one field

149

Starting word (Always word 1) 0 - 5 follow on words (Some combination of words 2, 3 and 4)*

* Words 2 and 3 must always appear together in that order

…

16 bits

Word X

16 - 96 bits

Word 1

16 bits 16 bits

Word X

Figure 40. The structure of a message in the Restaurant Locator Protocol

representing a name. If bit 6 is a 1, bit 7 indicates a gender (either male or female)

and bits 8 - 14 are a field representing a name. Figure 41 shows a bit map of the fields

in all the words of RLP. Table 12 describes each field and lists their valid values.

150

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 1 ug op 1 0 0 0 0 0

0 1 0 1 0 0 0 0 1

0 1 1 1 0 0 0 1 0 GI m/f*

Spr

Word 4

Type 3 Name / Name (LSBs)

bits :

Spare

Word 4

Type 2

Mng (MSBs)

SpareManager (LSBs)

Word 3
Longitude (MSBs)

Longitude (LSBs)

Word 4

Type 1

Health

Type A Type B

Word 2
Latitude (LSBs)

Latitude (MSBs)

Word 1
Num_Words

Restaurant

bits :

Figure 41. Bit maps for the words in the Restaurant Locator Protocol

Field Name Description Length (bits)
Valid Values

(decimal)

Number of words

(Num Words)

Describes the number of words following Word

1 in the message
3 0 - 5

Urgent Flag (ug) Indicates if the message is urgent 1 0 or 1

Open Flag (op) Indicates if the restaurant is open 1 0 or 1

Restaurant

Indicates the restaurant name. This would in-

volve a table (not included) that might start,

0 – Unknown, 1 – Einstein Bagels, etc.

8 0 - 162

Latitude

Indicates the latitude in 2’s compliment and

increments of 90/4095 degrees. The polar re-

gions (above 80◦)are considered invalid and

shall not be used

13 455-7736

Longitude
Indicates the longitude in 2’s compliment and

increments of 180/4095 degrees.
13 0-8191

Healthiness

(Health)

Indicates the healthiness of the food on a scale

from zero to three
2 0-3

Type A

0 – Fast food

1 – Casual sit down

2 – Upscale

2 0-2

151

Field Name Description Length (bits)
Valid Values

(decimal)

Type B

0 – No Type

1 – American

2 – Itallian

3 – Mexican

4 – Chinese

5 – Japanese/Korean

6 – Mediterranean

7 – Middle Eastern

8 – Indian

9 – French

10 – German

11 – Pizza

12 – Sandwiches

13 – Buffet

4 0-13

Manager

A name for the manager of the restaurant. As

with the restaurant field, this may involve a

table.

8 0-254

Gender Indicator

Determines which fields appear next. If a 0,

the 8 bit name field appears, if a 1, the 1 bit

gender field, and the 7 bit gendered name field

appear.

1 0 and 1

Name
A name of a restaurant employee, as with the

manager field, this may involve a table.
8 0-254

Male or Female

(m/f)
A male (0) or female (1) name follows 1 0 and 1

Gendered Name
A name of a restaurant employee, as with the

manager field, this may involve a table.
7 0-126

Spare (spr) Unused bits varies 0

Table 12. A description of the fields in the Restaurant Locator Protocol

152

This Restaurant Locator Protocol is represented by the modified Peach Pit Data

Model shown here:

<DataModel name=”Restaurant Locator”>
<Block name=”OuterRepeatingBlock” minOccurs=”1” maxOccurs=”8”>

<RuleSet block=”OuterRepeatingBlock” choice=”Word Choice”>
<Position token=”0” present=”yes” position=”1” />
<Repeats token=”0” precision=”exactly” times=”1” />
<Repeats token=”1” precision=”no more than” times=”1” />
<Repeats token=”2” precision=”no more than” times=”1” />
<Repeats token=”3” precision=”no more than” times=”3” />
<Sequence token=”1” token2=”2” present =”yes” bora=”after” proximity=”immediately” />
<Sequence token=”2” token2=”1” present =”yes” bora=”before” proximity=”immediately” />

</RuleSet>
<Choice name=”Word Choice”>

<Block name=”Word1”>
<Number name = ”Word Type1” token=”true” size=”3” value=”1”>

<Hint weight=”10”/>
</Number>
<Number name=”Num Words” size=”3”>

<Hint valid =”0-5”/>
<Relation type=”count” of=”OuterRepeatingBlock” adjustment=”+1”/>

</Number>
<Number name=”Urgent” size=”1”>

<Hint valid =”all”/>
</Number>
<Number name=”Open” size=”1”>

<Hint valid =”all”/>
</Number>
<Number name=”Restaurant” size=”8”>

<Hint valid =”0-162”/>
</Number>

</Block>
<Block name=”Word2”>

<Number name = ”Word Type2” token=”true” size=”3” value=”2”>
<Hint weight=”10”/>

</Number>
<Number name=”Latitude” size=”13”>

<Hint valid =”455-7736” type=”numeric”/>
</Number>

</Block>
<Block name=”Word3”>

<Number name = ”Word Type3” token=”true” size=”3” value=”3”>
<Hint priority=”5”/>

</Number>
<Number name=”Latitude” size=”13”>

<Hint valid =”all”/>
</Number>

</Block>
<Block name=”Word4”>

<Number name = ”Word Type4” token=”true” size=”3” value=”4”>
<Hint weight=”10”/>

</Number>
<Choice name=”label choice” >

<Block name =”Word4a”>
<Number name=”Labela” size=”3” token =”true” value =”0”>
</Number>
<Number name=”Healthiness” size=”2”>

<Hint valid =”all”/>
</Number>
<Number name=”TypeA” size=”2”>

<Hint invalid =”3”/>
</Number>
<Number name=”TypeB” size=”4”>

<Hint valid =”0-13”/>
</Number>
<Number name=”Spare” size=”2”>

<Hint valid =”0”/>

153

</Number>
</Block>
<Block name =”Word4b”>

<Number name=”Labelb” size=”3” token =”true” value =”1”>
</Number>
<Number name=”Manager” size=”8”>

<Hint valid =”0-254”/>
</Number>
<Number name=”Spare” size=”2”>

<Hint valid =”0”/>
</Number>

</Block>
<Block name =”Word4c”>

<Number name=”Labelc” size=”3” token =”true” value =”2”>
</Number>
<Number name = ”Gender inc” size=”1”>

<Relation type=”choice” of=”Word4cChoice” links=”0,1”/>
</Number>
<Choice name=”Word4cChoice”>

<Block name=”NoGender”>
<Number name=”StaffName1” size=”8”>

<Hint valid =”0-254”/>
</Number>

</Block>
<Block name=”Gender”>

<Number name=”Manager” size=”1”>
<Hint valid =”all”/>

</Number>
<Number name=”StaffName2” size=”7”>

<Hint valid =”0-126”/>
</Number>

</Block>
</Choice>
<Number name=”Spare” size=”1”>

<Hint valid =”0”/>
</Number>

</Block>
</Choice>

</Block>
</Choice>

</Block>
</DataModel>

154

Appendix C. Coverage Calculator Application Example

In this appendix, the equations and procedures presented in Chapter III will be

applied to a simple protocol and test set in order to demonstrate how they are properly

applied.

The protocol used in this chapter was created to illustrate all the major elements

a data model may contain, while still being short enough to present in this form. The

protocol consist of six fields, named fields A through F, and can be represented by

the diagram in Figure 42.

A B C

D

F

E

Repeat based on
value in B

Figure 42. Diagram of the fields in the example protocol

Field B is a repeating relation field that says how many times the block of fields

C, D, E, and F can repeat. Field C is a choice relation field that determines whether

fields D and E, or F are included. Details of the fields are shown in Table 13. Since

there is a choice within a repeating block, a set of rules may be applied that restrict

what choice can be made when in a sequence of repeating choices. For this protocol

the only rule is that a choice of 0, or fields D and E must follow field C, must always

be the first choice in a sequence of repeated choices. After that either choice may be

made.

155

Field Length (bits) Valid Values Additional Information

A 6 0 – 14 This field is numeric and weighted by 5 times

B 2 1 – 3

This is a repeating relation field with no adjust-

ment. Its value is the number of times C must

appear.

C 1 0 or 1

This is a choice relation field. If it is 0, fields D

and E follow, if it is 1, field F follows. This field

must always be 0 the first time it appears in a

message.

D 1 0 or 1

E 2 1 – 3

F 3 0 – 2

Table 13. A description of the fields in the example protocol

The modified Peach Pit Data Model for this protocol is shown here:

<DataModel name=”SimpleProtocol2”>
<Number name=”Field A” size=”6”>

<Hint invalid =”15-63” type=”numeric” weight=”5”/>
</Number>
<Number name=”Field B” size=”2”>

<Relation type=”count” of=”Repeating Block”/>
<Hint valid =”1-3”/>

</Number>
<Block name=”Repeating Block” minOccurs=”0” maxOccurs=”3”>

<RuleSet block=”Repeating Block” choice=”Choice Block”>
<Position token=”0” present=”yes” position=”1” />

</RuleSet>
<Number name=”Field C” size=”1”>

<Relation type=”choice” of=”Choice Block” links=”0,1”/>
<Hint valid =”all”/>

</Number>
<Choice name=”Choice Block”>

<Block name=”Choice 1”>
<Number name=”Field D” size=”1”>

<Hint valid =”all”/>
</Number>
<Number name=”Field E” size=”2”>

<Hint invalid =”0”/>
</Number>

</Block>
<Block name=”Choice 2”>

<Number name=”Field F” size=”3”>
<Hint invalid =”3-7”/>

</Number>
</Block>

156

</Choice>
</Block>

</DataModel>

In this appendix, coverage of the set of test cases shown in Table 14 will be

computed.

Test case number Hexadecimal Binary
1 0F78A 00001111011110001010
2 AF4A 1010111101001010
3 0E8A 0000111010001010
4 3D7 0001000101111010
5 167B 0001011001111011
6 CD4 110011010100

Table 14. A set of test cases for the example protocol.

The coverage calculation can be divided into two major steps: finding first order

coverage and finding multi-order coverage. For simplicity the calculation will use test

set coverage C2
Fuzz Set which is shown in (65) on page 80. This test set coverage value

only relies on first and second order coverage. Therefore the first step will be to find

the first order coverage of the 6 test cases (done in Section C.1), and the second step

will be to find those same test case’s second order coverage (done in Section C.2).

Finally the two results will be combined to find C2
Fuzz Set in Section C.3.

C.1 First Order Coverage

The first step in computing first order coverage of a set of test cases is to apply

the first order limitations shown in Section 3.2.1 on page 65. The first limitation

says that a test case may provide coverage if and only if it contains only one invalid

field. To determine which test cases contain only one invalid field, they all need to be

parsed and each field’s validity needs to be checked. This is done in Table 15. Notice

that since some of the fields repeat; values for them may appear multiple times in the

same test case.

157

Test Case
Fields

Invalid
A B C D E F

1
Values 3 3 0 1 1 1 3 0 2

0
Invalid

2
Values 43 3 0 1 1 0 2

3
Invalid X X X

3
Values 3 2 1 1 0 2

2*
Invalid X X

4
Values 15 1 0 1 3

1
Invalid X

5
Values 5 2 0 1 1 3 3

1
Invalid X

6
Values 51 1 0 1 0

2
Invalid X X

* Breaks repeating choice rule, first choice must be 0

Table 15. Parsing the test cases for the example protocol

Only test cases 4 and 5 pass the first order test case limitation, so they are the

only ones that will contribute coverage. The second limitation applies to fields. Fields

A, B, E and F all have invalid spaces. This can be found by comparing the values

considered valid with the length in bits of each field shown in Table 13. This means

that fields C and D are not considered for first order coverage. The sizes for fields

A, E, and F are simply the number of possible invalid values that can be entered.

Since field B is a repeating relation field, its invalid space is calculated in a special

way described in Section 3.1.3.1 on page 48.

With the limitations applied, the procedure listed in Section 1 on page 65 can

now be followed. The first step was already achieved during the parsing, the invalid

fields of test cases 4 and 5 are fields A and F respectively as shown in Table 15. The

second step, sorting the test cases based on their invalid fields is trivial since there

are only two test cases and two fields. Field A has one test case, test case 4, and field

F has one test case, test case 5. The third step is to apply the appropriate coverage

calculation for the test cases for each field.

158

Field A is a numeric field with no value weighting, so by Table 2, the equation

to be used is (38) on page 55. Field B is not numeric, nor does it contain weighted

values, so the equation to be used is (29) on page 47. Field coverage equations can

require an input of the invalid space set of values and a set of test case values. The

necessary inputs to the two equations and their result for this example are shown in

Table 16.

Field Equation Inputs Result

A (38)

min(I)= 15

19.85%
max(I)= 63
|I| = 49
m = 1
ti = 15

F (29)
m = 1

68.29%|I| = 5

Table 16. Inputs and results from applying the applicable field coverage equations.

The final step is to combine field coverage values into a singular value for first

order coverage. One of the fields in this protocol, field A, is weighted. That is, the

tester expects this field is 5 times as likely to contain a vulnerability than the other

fields. Since field weighting is present, equation (57) on page 67 is used. If field

weighting had not been present equation (58) on page 67 would have been used.

The inputs to (57) are:

� F , the number of applicable fields. This is 4, fields A, B, E, and F.

� E[Ni] for i = 1, . . . , F . This is the expected number of vulnerabilities. Since this

figure is normalized by E[NTotal], it is not important that the actual expected

number of vulnerabilities is supplied, only that the ratio between the expecta-

tions of different fields is accurate. By default all fields receive E[Ni] = 1 except

for the weighted field, E[N1] = 5.

159

� Ci for i = 1, . . . , F . This is the field coverage of each field. C1 = 19.85% and

C4 = 68.29%. All other Ci = 0 since no test cases tested those fields.

With these inputs, (57) returns a first order coverage value of C1 = 20.94%.

C.2 Second Order Coverage

The first step in computing second order coverage of a set of test cases is to apply

the Rth order limitations shown in Section 3.2.2.2 on page 71 with R = 2. The first

limitation says that a test case provides second order coverage if and only if there is

some combination of 2 fields that has at least one invalid value set and contains all the

invalid fields and IIC pairs present in the test case. That is a very wordy statement,

but it can be simplified to “the test case must have at least one invalid field but

no more than two invalid fields”. Unfortunately this simple language doesn’t mean

exactly the same thing as the limitation when complex test cases are considered, so

it can not be substituted for the language in the limitation in all cases. In this case

however, this statement is an equivalent limitation.

Test cases 3, 4, 5 and 6 all pass this limitation. Test case 1 fails because it does

not have at least one invalid field and test case 2 fails because it has more than 2

invalid fields. This can be seen in Table 15.

The second limitation says: “A field combination is assigned a coverage value and

incorporated into the final 2nd order coverage metric if and only if |I| 6= 0.” This

means that it needs to be determined which field combinations in this protocol have

an invalid space. This is done using (60) on page 74 reprinted here:

M =

(
F

R

)
−
(
F − FI

R

)
+ FCIICR

−QR

The FCIICR
term can be eliminated right away, it is 0, because the only IIC pair in

160

this protocol is between fields B and C because of their repeating choice relationship.

Since field B has an invalid space, this combination is not included in FCIICR
. F is 6,

there are 6 fields in the protocol, and FI is 4, fields A, B, E, and F have invalid spaces.

R is 2 since this is for second order field combinations. Lastly, QR, the number of

field combinations with invalid spaces that cannot exist in the same message needs

to be found.

It might be tempting to initially think that QR = 2 because the combinations of

fields D and F and E and F cannot appear together if field C does not repeat. This

would be correct if there was no chance for these blocks to repeat, but they can, so

fields D and F and fields E and F may appear together in a message (and do in test

cases 1, 2 and 5). Therefore QR = 0. Applying (60):

M =

(
6

2

)
−
(

2

2

)
+ 0− 0 = 15− 1 = 14

There are 14 field combinations with invalid spaces. It also can be noted that there

are 15 field combinations total, but the combination of fields C and D has no invalid

space. This combination does not meet the limitation and is therefore dropped.

With the limitations applied, it is time to move on to applying the procedure

in Section 3.2.2 on page 72. Like in the first order case,the first step was already

completed during the parsing shown in Table 15. The next step involves looking

at each field combination and collecting the test cases that make this combination

invalid, but have no invalid fields outside of this combination. This is done in Table

17.

Next, in step 3, the field combination coverage for each field combination needs

to be calculated. This is easy for combinations B–D, B–E, C–E, and D–E since they

have no applicable test cases, their coverage is zero. For the remaining test cases

the field coverage equation, (29) is used. While this equation was designed for field

161

Field Combination Applicable test cases
A – B 4
A – C 4
A – D 4
A – E 4, 6
A – F 5
B – C 3
B – D none
B – E none
B – F 5
C – E none
C – F 5
D – E none
D – F 5
E – F 5

Table 17. Test cases that contribute to coverage of each field combination

coverage, it is used for field combination coverage as well until a better method for

computing coverage over multi-order spaces is found. Since this equation assumes

no relation between values, and multi-order invalid spaces can be represented as first

order spaces like shown in Section 3.2.2.1 on page 68, this equation can be used with

decent results. One way to improve this equation would be to include a PMF that is

tailored to second order spaces. For now the generic PMF derived in Section 3.3 is

used.

Equation (29) requires only the number of applicable test cases, m, and the size

of the invalid space |I| to compute coverage. m is trivial to obtain from Table 17, it is

just the number of test cases that appear in the second column for each combination.

|I| is more difficult to find.

The invalid space of a second order field combination is the set of value pairs that

are invalid. For a value pair to be invalid, one of the values in it must be invalid or

they must be IIC. Section 3.2.2 describes these types of fields. Said more simply, the

number of invalid pairs is simply the total number of pairs less the valid ones.

162

Most fields may take on a number of values equal to 2 raised to the number of bits

in the field. The exception to this is, field B, a repeating relation field. The number

of distinct values it can take on are calculated using the method in Section 3.1.3.1 on

page 48. The number of value pairs between two fields is simply the product of the

number of values each field can take on.

Ignoring the field combination B – C which has IIC value pairs, for any value pair

to be valid, both values must be valid. The total number of valid pairs for a field

combination can therefore be found by finding the product of the number of valid

values in each field. The total number of pairs, minus the total number of valid pairs

is logically the total number of invalid pairs, or |I|; Total Combined Size − Valid

Combined Size = |I|. All this is shown in Table 18 for the field combinations without

IIC value pairs.

Field Total Size Valid Size |I|
Combination Field 1 Field 2 Combined Field 1 Field 2 Combined

A–B 64 16 1024 15 3 45 979
A–C 64 2 128 15 2 30 98
A–D 64 2 128 15 2 30 98
A–E 64 4 256 15 3 45 211
A–F 64 8 512 15 3 45 467
B–D 12* 2 24 3 2 6 18
B–E 12* 4 48 3 3 9 39
B–F 8* 8 64 2 3 6 58
C–E 1** 4 4 1 3 3 1
C–F 1** 8 8 1 3 3 5
D–E 2 4 8 2 3 6 2
D–F 2 8 16 2 3 6 10
E–F 4 8 32 3 3 9 23

* For some number of repeats fields may not exist, or may break rules if they do exist.

This number reflects the possible values this repeating relation field can take that validly include the other field.

** For some fields to appear, this choice must be a certain value

Table 18. Calculating |I| for field combinations without IIC value pairs.

To find the second order invalid space for field combination B–C, a combination of

163

two structure fields, the approach described in Section 3.2.3.3 on page 77 needs to be

applied. Figure 43 shows the adaptation of figure 13 to this specific field combination.

The size of the invalid space for field combination B–C is found to be 53.

Actual

Repeats

Repeating

Relation

Value

Number of

Permutations

(with

replacment) Valid Invalid

0 0 1 0 1

0 1 1 0 1

0 2 1 0 1

0 3 1 0 1

1 0 0 1 2 0 2

1 1 0 1 2 1 1

1 2 0 1 2 0 2

1 3 0 1 2 0 2

2 0 00 01 10 11 4 0 4

2 1 00 01 10 11 4 0 4

2 2 00 01 10 11 4 2 2

2 3 00 01 10 11 4 0 4

3 0 000 001 010 011 100 101 110 111 8 0 8

3 1 000 001 010 011 100 101 110 111 8 0 8

3 2 000 001 010 011 100 101 110 111 8 0 8

3 3 000 001 010 011 100 101 110 111 8 4 4

Valid Total: 60 7 53

Value of Field C

Figure 43. Calculation of the spaces associated with the B–C field combination

Now that |I| has been found for every field combination, (29) can be applied in

each case to get coverage values for all M combinations. With these coverage values,

step 4 can be completed using (61). Had any field combination been weighted, the

wighted version of this equation, (62), would be used instead. This returns a second

order coverage value, C2 = 41.96%.

C.3 Combining for Final Result

Using the simple method for arriving at coverage of a test set presented in Section

3.2.4, C2
Fuzz Set can be calculated using (65). With C1 = 20.94% and C2 = 41.96%,

the final coverage value for this test set is C2
Fuzz Set = 31.45%.

164

Appendix D. Open Source Protocol Vulnerability Data

A table of data on the invalid spaces of fields in a few open source protocols. This

data is used to determine the PMF that describes the distributions of vulnerabilities

in a variety of field types. This data and its implications are described in Section 3.3.

Table 19. Characterization of the spaces associated with some fields from select open
source protocols

Protocol* Field Name Type |I| |V | Description

GPS-SPS Eccentricity Numeric 4× 109 2× 109
Eccentricity above 0.25 causes a

computational error

GPS-SPS Reference Time Numeric 27736 27736 Reference Time exceeds one week

GPS-SPS Day Number Numeric 1 1 Day number of 0 causes an error

GPS-SPS Day Number Numeric 248 248 Day number above 7 causes error

GPS-SPS
Satellite Configu-

ration Code
Standard 6 6

The receiver cannot process any

invalid satellite types

GPS-SPS Spares Standard 30 30

The receiver attempts to process

the spares field because it does

not contain alternating 1’s and

0’s

GPS-SPS SV ID Standard 63 43 A valid ID but on the wrong page

GPS-SPS SV ID Standard 63 19 An invalid ID

GPS-SPS
Special Message

Character
Standard 211 32

Receiver cannot handle a control

character

GPS-SPS
Special Message

Character
Standard 212 21

Receiver cannot process a com-

mon, but excluded, character

GPS-SPS
Special Message

Character
Standard 213 1

The ASCII delete character

causes an issue

165

Protocol* Field Name Type |I| |V | Description

BNEP BNEP Type Standard 122 122
The receiver cannot process in-

valid word types

BNEP BNEP Type Standard 122 96

The receiver is not designed to

handle anything other then 0x0

or 0x7 for the first 4 bits

BNEP UUID Size Standard 2 1

A value of zero for message

length causes a divide by zero er-

ror

BNEP UUID Size Standard 2 2
Any invalid value for message

length causes an error

BNEP
Response Mes-

sage
Standard 65531 65280

A non-zero first byte causes an

issue

BNEP List Length Standard 65395 63488
A non-zero first four bits causes

an issue

BNEP List Length Standard 65395 1540 Valid range, not divisible by 12

BNEP List Length Standard 65395 140
Divisible by 6, not 12. (contains

start but not end word)

OSGP Time Zone Offset Numeric 65509 65487
A greater than 24 hour time zone

adjustment causes an error

OSGP
Response Error

Codes
Standard 244 3

Response Error codes 0x07 - 0x09

are processed since they fall be-

tween valid error codes, causing

an error

OSGP
Response Error

Codes
Standard 244 244

Any invalid error code causes an

issue when processed

166

Protocol* Field Name Type |I| |V | Description

OSGP Integer Format Standard 3 3
data type format other than

two’s compliment causes error

OSGP Frequency Standard 5 2

Receiver designed to reject values

above the maximum of 4, but still

accepts the undefined values of 0

and 1 for this field

OSGP ID Code Standard 212 212
Any undefined ID code causes is-

sue

OSGP ID Code Standard 212 3
Undefined phase angle ID code

causes issue

OSGP Day of Week Standard 1 1
A value of 7 is undefined (0 =

Sunday, 1 = Monday, etc.)

PWL Size Numeric 64045 64045 Too many Payload data octets

PWL Priority Standard 6 6 Invalid priority

PWL
Requested Ser-

vice ID
Standard 155 2

Small segment of reserved bits

causes error

PWL Service ID Standard 155 1 Edge case undefined causes issue

PWL Service ID Standard 155 1 Edge case undefined causes issue

PWL Segment Size Numeric 256 3
Shorter than possible with re-

quire fields

PWL Segment Size Numeric 64079 64079
Longer than allowed by Ethernet

frame

PWL Command ID Standard 116 25
Range between two types causes

issue

PWL Command ID Standard 116 15
Range between two types causes

issue

167

Protocol* Field Name Type |I| |V | Description

PWL Command ID Standard 116 61
Range between two types causes

issue

PWL Command ID Standard 116 15
Range between two types causes

issue

PWL Command ID Standard 116 116 Any invalid type causes issue

PWL
Offset Payload

data
Numeric 2 2 Too short

PWL
Offset Payload

data
Numeric 64073 64073 Too long

PWL Sub-index Standard 65281 65281 Invalid sub-index

PWL Sub-index Standard 65281 1
Invalid sub-index still less than

28

* GPS-SPS — Global Positioning System — Standard Positioning Service

BNEP — Bluetooth Network Encapsulation Protocol

OSGP — Open Smart Grid Protocol

PWL — Ethernet POWERLINK

168

Bibliography

1. Euclidean algorithm. Encyclopedia of Mathematics. Available at
https://www.encyclopediaofmath.org/index.php/Euclidean algorithm .

2. Department of defense interface standard for digital time division command/response
multiplex data bus. Technical Report MIL-STD-1553B, Department of Defense, 1978.

3. Darpa internet program protocol specification. Technical Report RFC: 791, Defense
Advanced Research Projects Agency, 1981.

4. Global positioning system standard positioning service signal specification, 2nd edition.
Technical report, United States Air Force, 1995.

5. D5.3 report on automated vulnerability discovery techniques. Technical Report SEC-
2011.2.5-1, European Communitys Seventh Framework Programme, 2011.

6. Ieee standard for ethernet. Technical Report 802.3-2015, Institute of Electrical and
Electronics Engineers, 2016.

7. Sulley. World Wide Web Page, December 2017. Available at
https://github.com/OpenRCE/sulley .

8. D. Aitel. The advantages of block-based protocol analysis for security testing. Immunity
Inc., 2002.

9. J. Cai, P. Zou, and D. Xiong et al. A guided fuzzing approach for security testing of
network protocol software. In 2015 6th IEEE International Conference on Software
Engineering and Service Science, pages 726–729. IEEE, 2015.

10. M. Eddington. Peach fuzzing platform. World Wide Web Page, December 2017. Avail-
able at
http://peachfuzzer.com.

11. J. Goodenough and S. Gehart. Toward a theory of test data selection. IEEE Transac-
tions on Software Engineering, SE-1(2):156–173, 1975.

12. S. Gorbunov and A. Rosenbloom. Autofuzz: Automated network protocol fuzzing
framework. International Journal of Computer Science and Network Security,
10(8):239–245, 2010.

13. Oulu University Secure Programming Group. Protos - security testing of protocol
implementations. World Wide Web Page. Available at
https://www.ee.oulu.fi/roles/ouspg/Protos.

14. Y. Hsu, G. Shu, and D. Lee. A model-based approach to security flaw detection of
network protocol implementations. In 2008 IEEE International Conference on Network
Protocols, pages 114–123. IEEE, October 2008.

169

15. C. Hu, C. Shan, W. Peng, R. Ma, and W. Ji. Fuzz testing data generation for network
protocol using classification tree. In 2014 Communications Security Conference (CSC
2014), page 23. IET, May 2014.

16. W. Johansson, M. Svensson, U. Larson, M. Almgren, and V. Gulisano. T-fuzz: Model-
based fuzzing for robustness testing of telecommunication protocols. In 2014 IEEE Sev-
enth International Conference on Software Testing, Verification and Validation, pages
323–332. IEEE, March 2014.

17. S. Kim, W. Jo, and T. Shon. A novel vulnerability analysis approach to generate
fuzzing test case in industrial control systems. In 2016 IEEE Information Technology,
Networking, Electronic and Automation Control Conference, pages 566–570. IEEE, May
2016.

18. B. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32–44, 1990.

19. A. Namin and J. Andrews. The influence of size and coverage on test suite effective-
ness. In Proceedings of the eighteenth international symposium on Software testing and
analysis - ISSTA ’09, pages 57–68, New York, New York, USA, July 2009. ACM Press.

20. Microsoft Developer Network. Definition of a security vulnerability. MSDN Library.
Available at
https://msdn.microsoft.com/en-us/library/cc751383.aspx.

21. M. Sutton and A. Greene. The art of file format fuzzing. Black Hat USA, 2005.

22. M. Sutton, A. Greene, and P Amini. Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education, Upper Saddle River, NJ, 2007.

23. E. Swihart and M. Reith. (forthcoming). redefining the air-gap for our weapon systems.
In 2018 International Conference on Cyber Warfare and Security, 2018.

24. L. Thomason. Tiny xml 2. World Wide Web Page, December 2017. Available at
https://github.com/leethomason/tinyxml2.

25. P. Tsankov, M. Torabi Dashti, and D. Basin. Secfuzz: Fuzz-testing security protocols.
In 2012 7th International Workshop on Automation of Software Test (AST), pages 1–7.
IEEE, June 2012.

26. P. Tsankov, M. Torabi Dashti, and D. Basin. Semi-valid input coverage for fuzz testing.
In Proceedings of the 2013 International Symposium on Software Testing and Analysis,
pages 56–66, New York, New York, USA, July 2013. ACM.

27. E. Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on Software
Engineering, SE-12(12):1128–1138, 1986.

28. Michal Zalewski. mangleme. GitHub Project. Available at
https://github.com/adobe/webkit/tree/master/Tools/mangleme.

29. H. Zhu. Software unit test coverage and adequacy. ACM Computing Surveys, 29(4):366–
427, 1997.

170

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2018 Master’s Thesis Oct 2016 — Mar 2018

Expected Coverage (ExCov): A Proposal to Compute Fuzz Test
Coverage within an Infinite Input Space

Swihart Evan V., GS-11 AFLCMC/EZAC

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-063

Air Force Research Laboratory, AFMC
Attn: Lt Col Patrick Sweeney
2250 Avionics Circle
Wright-Patterson AFB, OH 45433-7765
patrick.sweeney@us.af.mil DSN: 713-4252

AFRL/RYWA

DISTRIBUTION STATEMENT A: PA APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

A Fuzz test is an approach used to discover vulnerabilities by intentionally sending invalid inputs to a system for the purpose of triggering some type of fault
or unintended effect that renders the system vulnerable to an exploit. Fuzz testing is an important cyber-testing technique used to find and fix vulnerabilities
before they are exploited. The fuzzing of military data links presents a particular challenge because existing fuzzing tools cannot be easily applied to these
systems. As a result, the tools and techniques used to fuzz these links vary widely in sophistication and effectiveness. Because of the infinite, or nearly
infinite, number of possible fuzzed messages that can be sent on a military data link, measuring the coverage of a fuzz test is not straightforward. This thesis
proposes an understandable and meaningful metric for protocol fuzz testing called ExCov. This metric computes the coverage of a fuzz test set from a
probabilistic model of vulnerability occurrence and defines coverage as the expected percent of existing vulnerabilities discovered by a set of test cases. This
metric enables the acquisitions community to more succinctly write weapons system requirements for cyber security. Furthermore, it quantifies the number of
faults and vulnerabilities that are expected to be found by a set of test cases, which provides decision makers with valuable information to make more
informed choices on whether or not to perform additional testing. As a result, industry will be better equipped to determine cost and effort when performing
cyber vulnerability testing. In addition, industry will also be able to more concretely represent the results of the cyber testing they perform. ExCov was
implemented in a suite of tools called ExFuzz, and these tools were used to compare and contrast military data link fuzz testing techniques that are in use
today. By assessing these current methods using the ExCov metric, optimal bit flip probabilities for the mutative fuzzing of three custom protocols was found.
A generative fuzzer was also built based on the metric and was shown to outperform mutative and manual generation strategies in nearly every case.

Fuzzing, Coverage Criterion, Military Data Links, Vulnerability Discovery

U U U U 182

Maj Timothy J. Carbino, AFIT/ENG

(937) 255-3636, x4220; timothy.carbino@afit.edu

